Posts

Showing posts from March 15, 2019

Royal Tunbridge Wells

Image
Royal Tunbridge Wells The Pantiles, det historiske senteret og turistsenteret i byen. Plassering Styresmakter Land   Storbritannia Konstituerande land   England Grevskap Kent Distrikt Tunbridge Wells Geografi Innbyggjarar  - By (2007) 61 402 Koordinatar 51°8′″N 0°16′″E  Koordinatar: 51°8′″N 0°16′″E  Diverse annan informasjon Postnummer TN1 - 4 Telefon-retningsnummer 01892 Commons har multimedia som gjeld: Royal Tunbridge Wells Tunbridge Wells (offisielt Royal Tunbridge Wells ) er ein by i området Weald i Kent i England, rett nord for grensa til East Sussex. Han har omkring 60 000 innbyggjarar, og er administrasjonssenter for distriktet Tunbridge Wells. I likskap med resten av distriktet er han delt inn i kretsar ( wards ). Det er åtte slike kretsar eller bydelar: Culverden, Pantiles, St. Markers, Park, Rusthall, Sherwood, St. James' og St. Johns. Kjelda som gav byen namnel...

Knife as defense against stray dogs

Image
1 Some places I travel to have stray dogs in the city. Can a knife be used effectively if attacked by one or more of them? I've had creepy close encounters. safety dogs share | improve this question asked 1 hour ago amphibient amphibient 1,825 2 14 38 add a comment  |  1 ...

Continuity of Linear Operator Between Hilbert Spaces

Image
2 1 $begingroup$ Note: Please do not give a solution; I am curious to understand why my solution is incorrect, and would prefer guidance to help me complete the question myself. Thank you. Let $mathcal{H}$ be a Hilbert space, and suppose that $Tintext{Hom}(mathcal{H},mathcal{H})$ . Suppose that there exists an operator $tilde{T}:mathcal{H}rightarrowmathcal{H}$ such that, begin{align} langle Tx,yrangle =langle x,tilde{T}yrangle, end{align} $forall x,yinmathcal{H}$ . Show that $T$ is continuous. My current solution is as follows: Assume for all $delta>0$ there exists $n>Ninmathbb{N}$ such that, begin{align} |x_{n}-x|<delta. end{align} Then, begin{align} langle Tx_{n}-Tx,Tx_{n}-Txrangle &= |Tx_{n}-Tx|^{2}\ &leq|Tx_{n}-Tx|=|T(x_{n}-x)|\ &leq|T||x_{n}-x|rightarrow 0text{...