Is it possible to find 2014 distinct positive integers whose sum is divisible by each of them?
$begingroup$
Is it possible to find 2014 distinct positive integers whose sum is divisible by each of them?
I'm not really sure how to even approach this question.
Source: Washington's Monthly Math Hour, 2014
discrete-mathematics intuition pigeonhole-principle
New contributor
$endgroup$
add a comment |
$begingroup$
Is it possible to find 2014 distinct positive integers whose sum is divisible by each of them?
I'm not really sure how to even approach this question.
Source: Washington's Monthly Math Hour, 2014
discrete-mathematics intuition pigeonhole-principle
New contributor
$endgroup$
$begingroup$
I cant even find two.
$endgroup$
– Rudi_Birnbaum
1 hour ago
1
$begingroup$
@Rudi_Birnbaum irrelevant. $2,4,6,12$ are all divisors of $2+4+6+12$.
$endgroup$
– JMoravitz
1 hour ago
$begingroup$
Well, at least I can find three… $1+2+3$
$endgroup$
– Wolfgang Kais
1 hour ago
$begingroup$
@JMoravitz humor?
$endgroup$
– Rudi_Birnbaum
1 hour ago
add a comment |
$begingroup$
Is it possible to find 2014 distinct positive integers whose sum is divisible by each of them?
I'm not really sure how to even approach this question.
Source: Washington's Monthly Math Hour, 2014
discrete-mathematics intuition pigeonhole-principle
New contributor
$endgroup$
Is it possible to find 2014 distinct positive integers whose sum is divisible by each of them?
I'm not really sure how to even approach this question.
Source: Washington's Monthly Math Hour, 2014
discrete-mathematics intuition pigeonhole-principle
discrete-mathematics intuition pigeonhole-principle
New contributor
New contributor
New contributor
asked 1 hour ago
Arvin DingArvin Ding
83
83
New contributor
New contributor
$begingroup$
I cant even find two.
$endgroup$
– Rudi_Birnbaum
1 hour ago
1
$begingroup$
@Rudi_Birnbaum irrelevant. $2,4,6,12$ are all divisors of $2+4+6+12$.
$endgroup$
– JMoravitz
1 hour ago
$begingroup$
Well, at least I can find three… $1+2+3$
$endgroup$
– Wolfgang Kais
1 hour ago
$begingroup$
@JMoravitz humor?
$endgroup$
– Rudi_Birnbaum
1 hour ago
add a comment |
$begingroup$
I cant even find two.
$endgroup$
– Rudi_Birnbaum
1 hour ago
1
$begingroup$
@Rudi_Birnbaum irrelevant. $2,4,6,12$ are all divisors of $2+4+6+12$.
$endgroup$
– JMoravitz
1 hour ago
$begingroup$
Well, at least I can find three… $1+2+3$
$endgroup$
– Wolfgang Kais
1 hour ago
$begingroup$
@JMoravitz humor?
$endgroup$
– Rudi_Birnbaum
1 hour ago
$begingroup$
I cant even find two.
$endgroup$
– Rudi_Birnbaum
1 hour ago
$begingroup$
I cant even find two.
$endgroup$
– Rudi_Birnbaum
1 hour ago
1
1
$begingroup$
@Rudi_Birnbaum irrelevant. $2,4,6,12$ are all divisors of $2+4+6+12$.
$endgroup$
– JMoravitz
1 hour ago
$begingroup$
@Rudi_Birnbaum irrelevant. $2,4,6,12$ are all divisors of $2+4+6+12$.
$endgroup$
– JMoravitz
1 hour ago
$begingroup$
Well, at least I can find three… $1+2+3$
$endgroup$
– Wolfgang Kais
1 hour ago
$begingroup$
Well, at least I can find three… $1+2+3$
$endgroup$
– Wolfgang Kais
1 hour ago
$begingroup$
@JMoravitz humor?
$endgroup$
– Rudi_Birnbaum
1 hour ago
$begingroup$
@JMoravitz humor?
$endgroup$
– Rudi_Birnbaum
1 hour ago
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
Hint: $2,4,6$ are all divisors of $2+4+6=12$. Similarly $2+4+6+12$ are all divisors of $2+4+6+12=24$
So too are $2,4,6,12,24$ all divisors of $2+4+6+12+24$
$~$
Claim: Let $x_1=2, x_2=4, x_3=6$ and let $x_{n+1} = sumlimits_{k=1}^n x_k$ for each $ngeq 3$. You have that $x_imid sumlimits_{k=1}^nx_k$ for all $ileq n$ for all $ngeq 3$.
$endgroup$
add a comment |
$begingroup$
$$begin{align}
1+2+3&=6\
1+2+3+6&=12\
1+2+3+6+12&=24\
vdots
end{align}$$
$endgroup$
$begingroup$
We can say that the $2014$ numbers produced this way are $1,2,3$ and $3cdot 2^k$ for $k in [1,2011]$
$endgroup$
– Ross Millikan
1 hour ago
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Arvin Ding is a new contributor. Be nice, and check out our Code of Conduct.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3143024%2fis-it-possible-to-find-2014-distinct-positive-integers-whose-sum-is-divisible-by%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Hint: $2,4,6$ are all divisors of $2+4+6=12$. Similarly $2+4+6+12$ are all divisors of $2+4+6+12=24$
So too are $2,4,6,12,24$ all divisors of $2+4+6+12+24$
$~$
Claim: Let $x_1=2, x_2=4, x_3=6$ and let $x_{n+1} = sumlimits_{k=1}^n x_k$ for each $ngeq 3$. You have that $x_imid sumlimits_{k=1}^nx_k$ for all $ileq n$ for all $ngeq 3$.
$endgroup$
add a comment |
$begingroup$
Hint: $2,4,6$ are all divisors of $2+4+6=12$. Similarly $2+4+6+12$ are all divisors of $2+4+6+12=24$
So too are $2,4,6,12,24$ all divisors of $2+4+6+12+24$
$~$
Claim: Let $x_1=2, x_2=4, x_3=6$ and let $x_{n+1} = sumlimits_{k=1}^n x_k$ for each $ngeq 3$. You have that $x_imid sumlimits_{k=1}^nx_k$ for all $ileq n$ for all $ngeq 3$.
$endgroup$
add a comment |
$begingroup$
Hint: $2,4,6$ are all divisors of $2+4+6=12$. Similarly $2+4+6+12$ are all divisors of $2+4+6+12=24$
So too are $2,4,6,12,24$ all divisors of $2+4+6+12+24$
$~$
Claim: Let $x_1=2, x_2=4, x_3=6$ and let $x_{n+1} = sumlimits_{k=1}^n x_k$ for each $ngeq 3$. You have that $x_imid sumlimits_{k=1}^nx_k$ for all $ileq n$ for all $ngeq 3$.
$endgroup$
Hint: $2,4,6$ are all divisors of $2+4+6=12$. Similarly $2+4+6+12$ are all divisors of $2+4+6+12=24$
So too are $2,4,6,12,24$ all divisors of $2+4+6+12+24$
$~$
Claim: Let $x_1=2, x_2=4, x_3=6$ and let $x_{n+1} = sumlimits_{k=1}^n x_k$ for each $ngeq 3$. You have that $x_imid sumlimits_{k=1}^nx_k$ for all $ileq n$ for all $ngeq 3$.
answered 1 hour ago
JMoravitzJMoravitz
48.2k33886
48.2k33886
add a comment |
add a comment |
$begingroup$
$$begin{align}
1+2+3&=6\
1+2+3+6&=12\
1+2+3+6+12&=24\
vdots
end{align}$$
$endgroup$
$begingroup$
We can say that the $2014$ numbers produced this way are $1,2,3$ and $3cdot 2^k$ for $k in [1,2011]$
$endgroup$
– Ross Millikan
1 hour ago
add a comment |
$begingroup$
$$begin{align}
1+2+3&=6\
1+2+3+6&=12\
1+2+3+6+12&=24\
vdots
end{align}$$
$endgroup$
$begingroup$
We can say that the $2014$ numbers produced this way are $1,2,3$ and $3cdot 2^k$ for $k in [1,2011]$
$endgroup$
– Ross Millikan
1 hour ago
add a comment |
$begingroup$
$$begin{align}
1+2+3&=6\
1+2+3+6&=12\
1+2+3+6+12&=24\
vdots
end{align}$$
$endgroup$
$$begin{align}
1+2+3&=6\
1+2+3+6&=12\
1+2+3+6+12&=24\
vdots
end{align}$$
answered 1 hour ago
saulspatzsaulspatz
17k31434
17k31434
$begingroup$
We can say that the $2014$ numbers produced this way are $1,2,3$ and $3cdot 2^k$ for $k in [1,2011]$
$endgroup$
– Ross Millikan
1 hour ago
add a comment |
$begingroup$
We can say that the $2014$ numbers produced this way are $1,2,3$ and $3cdot 2^k$ for $k in [1,2011]$
$endgroup$
– Ross Millikan
1 hour ago
$begingroup$
We can say that the $2014$ numbers produced this way are $1,2,3$ and $3cdot 2^k$ for $k in [1,2011]$
$endgroup$
– Ross Millikan
1 hour ago
$begingroup$
We can say that the $2014$ numbers produced this way are $1,2,3$ and $3cdot 2^k$ for $k in [1,2011]$
$endgroup$
– Ross Millikan
1 hour ago
add a comment |
Arvin Ding is a new contributor. Be nice, and check out our Code of Conduct.
Arvin Ding is a new contributor. Be nice, and check out our Code of Conduct.
Arvin Ding is a new contributor. Be nice, and check out our Code of Conduct.
Arvin Ding is a new contributor. Be nice, and check out our Code of Conduct.
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3143024%2fis-it-possible-to-find-2014-distinct-positive-integers-whose-sum-is-divisible-by%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
I cant even find two.
$endgroup$
– Rudi_Birnbaum
1 hour ago
1
$begingroup$
@Rudi_Birnbaum irrelevant. $2,4,6,12$ are all divisors of $2+4+6+12$.
$endgroup$
– JMoravitz
1 hour ago
$begingroup$
Well, at least I can find three… $1+2+3$
$endgroup$
– Wolfgang Kais
1 hour ago
$begingroup$
@JMoravitz humor?
$endgroup$
– Rudi_Birnbaum
1 hour ago