Relation between roots and coefficients - manipulation of identities
$begingroup$
The polynomial $x^3+3x^2-2x+1$ has roots $alpha, beta, gamma$ . Find $$alpha^2(beta + gamma) + beta^2(alpha + gamma) + gamma^2(alpha + beta)$$
I tried finding the relation using $-b/a$, $c/a$ and $-d/a$. I couldn’t seem to find anything. I also tried solving for one root but it gave me back the polynomial but with the root as the variable. Also the polynomial can not be factorised.
polynomials
New contributor
$endgroup$
add a comment |
$begingroup$
The polynomial $x^3+3x^2-2x+1$ has roots $alpha, beta, gamma$ . Find $$alpha^2(beta + gamma) + beta^2(alpha + gamma) + gamma^2(alpha + beta)$$
I tried finding the relation using $-b/a$, $c/a$ and $-d/a$. I couldn’t seem to find anything. I also tried solving for one root but it gave me back the polynomial but with the root as the variable. Also the polynomial can not be factorised.
polynomials
New contributor
$endgroup$
add a comment |
$begingroup$
The polynomial $x^3+3x^2-2x+1$ has roots $alpha, beta, gamma$ . Find $$alpha^2(beta + gamma) + beta^2(alpha + gamma) + gamma^2(alpha + beta)$$
I tried finding the relation using $-b/a$, $c/a$ and $-d/a$. I couldn’t seem to find anything. I also tried solving for one root but it gave me back the polynomial but with the root as the variable. Also the polynomial can not be factorised.
polynomials
New contributor
$endgroup$
The polynomial $x^3+3x^2-2x+1$ has roots $alpha, beta, gamma$ . Find $$alpha^2(beta + gamma) + beta^2(alpha + gamma) + gamma^2(alpha + beta)$$
I tried finding the relation using $-b/a$, $c/a$ and $-d/a$. I couldn’t seem to find anything. I also tried solving for one root but it gave me back the polynomial but with the root as the variable. Also the polynomial can not be factorised.
polynomials
polynomials
New contributor
New contributor
edited 2 hours ago
Eevee Trainer
6,41811237
6,41811237
New contributor
asked 2 hours ago
MmloilerMmloiler
161
161
New contributor
New contributor
add a comment |
add a comment |
3 Answers
3
active
oldest
votes
$begingroup$
Since the polynomial has three roots and its highest degree is 3, we can write
$$
p(x) = (x-alpha)(x-beta)(x-gamma) = x^3 +3x^2 - 2x + 1.
$$
It then follows from
$$
x^3 - (alpha+beta+gamma)x^2 + (alphabeta + beta gamma + gamma alpha)x - alphabeta gamma = x^3+3x^2-2x + 1
$$
that
$$
alpha+beta+gamma = -3, quad alphabeta + beta gamma + gamma alpha = -2, quad
alphabeta gamma = -1.
$$
Note that
$$
-2alpha = alpha(alphabeta + beta gamma + gamma alpha) = alpha^2(beta+gamma) +alphabetagamma = alpha^2(beta+gamma) - 1.
$$
Thus $alpha^2(beta + gamma)=1-2alpha$.
Similarly, $beta^2(alpha + gamma) = 1-2beta$ and $gamma^2(alpha + beta) = 1-2gamma$.
Therefore,
begin{align}
alpha^2(beta + gamma) + beta^2(alpha + gamma) + gamma^2(alpha + beta)
&= (1-2alpha) + (1-2beta) + (1-2gamma) \
&= 3 -2(alpha+beta+gamma) = 3 +6 =9.
end{align}
$endgroup$
add a comment |
$begingroup$
Any symmetric (polynomial) function of the roots can be expressed in terms of the Vieta coefficients. Here, check the hint:
$$sum alpha^2(beta+gamma) = (alpha+beta+gamma)(alphabeta+betagamma+gammaalpha)-3alphabetagamma$$
--
In case you want a systematic method to express in terms of elementary symmetric polynomials, check this answer for Gauss' algorithm.
$endgroup$
$begingroup$
Another often useful approach is to transform the polynomial (and / or) the result using the given polynomial. For e.g. $sum alpha^2(beta+gamma) = sumalpha^2(-3-alpha) = sum (-alpha^3-3alpha^2) = sum (-2alpha+1)=-2cdot(-3)+3=9 $
$endgroup$
– Macavity
1 hour ago
add a comment |
$begingroup$
$a,b,c$ are the three roots.
$$
begin{align}
&a^2*(b+c)+b^2*(a+c)+c^2*(a+b)\
={}&(a+b+c)*(a^2+b^2+c^2)-(a^3+b^3+c^3)\
={}&(-3)*(a^2+b^2+c^2)-(a+b+c)^3\
={}&(-3)*((a+b+c)^2-2ab-2ac-2bc)-(a+b+c) * (a^2+b^2+c^2) + ab(a+b) + ac(a+c) + bc(b+c)\
={}& (-3)*(9-2*(-2))-(-3)*(9-2*(-2)) + ab(a+b+c-c) + ac(a+b+c-b) + bc(a+b+c-a)\
={}&(a+b+c)(ab+ac+bc)-3abc\
={}&(-3)*(-2)-3*(-1)\
={}&6-(-3)\
={}&9
end{align}
$$
New contributor
$endgroup$
5
$begingroup$
Welcome to MSE. Note that I, at least, found what you wrote hard to read. To help make your future math formatting look better, I suggest you read & use what it says in MathJax basic tutorial and quick reference.
$endgroup$
– John Omielan
2 hours ago
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Mmloiler is a new contributor. Be nice, and check out our Code of Conduct.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3121014%2frelation-between-roots-and-coefficients-manipulation-of-identities%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
3 Answers
3
active
oldest
votes
3 Answers
3
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Since the polynomial has three roots and its highest degree is 3, we can write
$$
p(x) = (x-alpha)(x-beta)(x-gamma) = x^3 +3x^2 - 2x + 1.
$$
It then follows from
$$
x^3 - (alpha+beta+gamma)x^2 + (alphabeta + beta gamma + gamma alpha)x - alphabeta gamma = x^3+3x^2-2x + 1
$$
that
$$
alpha+beta+gamma = -3, quad alphabeta + beta gamma + gamma alpha = -2, quad
alphabeta gamma = -1.
$$
Note that
$$
-2alpha = alpha(alphabeta + beta gamma + gamma alpha) = alpha^2(beta+gamma) +alphabetagamma = alpha^2(beta+gamma) - 1.
$$
Thus $alpha^2(beta + gamma)=1-2alpha$.
Similarly, $beta^2(alpha + gamma) = 1-2beta$ and $gamma^2(alpha + beta) = 1-2gamma$.
Therefore,
begin{align}
alpha^2(beta + gamma) + beta^2(alpha + gamma) + gamma^2(alpha + beta)
&= (1-2alpha) + (1-2beta) + (1-2gamma) \
&= 3 -2(alpha+beta+gamma) = 3 +6 =9.
end{align}
$endgroup$
add a comment |
$begingroup$
Since the polynomial has three roots and its highest degree is 3, we can write
$$
p(x) = (x-alpha)(x-beta)(x-gamma) = x^3 +3x^2 - 2x + 1.
$$
It then follows from
$$
x^3 - (alpha+beta+gamma)x^2 + (alphabeta + beta gamma + gamma alpha)x - alphabeta gamma = x^3+3x^2-2x + 1
$$
that
$$
alpha+beta+gamma = -3, quad alphabeta + beta gamma + gamma alpha = -2, quad
alphabeta gamma = -1.
$$
Note that
$$
-2alpha = alpha(alphabeta + beta gamma + gamma alpha) = alpha^2(beta+gamma) +alphabetagamma = alpha^2(beta+gamma) - 1.
$$
Thus $alpha^2(beta + gamma)=1-2alpha$.
Similarly, $beta^2(alpha + gamma) = 1-2beta$ and $gamma^2(alpha + beta) = 1-2gamma$.
Therefore,
begin{align}
alpha^2(beta + gamma) + beta^2(alpha + gamma) + gamma^2(alpha + beta)
&= (1-2alpha) + (1-2beta) + (1-2gamma) \
&= 3 -2(alpha+beta+gamma) = 3 +6 =9.
end{align}
$endgroup$
add a comment |
$begingroup$
Since the polynomial has three roots and its highest degree is 3, we can write
$$
p(x) = (x-alpha)(x-beta)(x-gamma) = x^3 +3x^2 - 2x + 1.
$$
It then follows from
$$
x^3 - (alpha+beta+gamma)x^2 + (alphabeta + beta gamma + gamma alpha)x - alphabeta gamma = x^3+3x^2-2x + 1
$$
that
$$
alpha+beta+gamma = -3, quad alphabeta + beta gamma + gamma alpha = -2, quad
alphabeta gamma = -1.
$$
Note that
$$
-2alpha = alpha(alphabeta + beta gamma + gamma alpha) = alpha^2(beta+gamma) +alphabetagamma = alpha^2(beta+gamma) - 1.
$$
Thus $alpha^2(beta + gamma)=1-2alpha$.
Similarly, $beta^2(alpha + gamma) = 1-2beta$ and $gamma^2(alpha + beta) = 1-2gamma$.
Therefore,
begin{align}
alpha^2(beta + gamma) + beta^2(alpha + gamma) + gamma^2(alpha + beta)
&= (1-2alpha) + (1-2beta) + (1-2gamma) \
&= 3 -2(alpha+beta+gamma) = 3 +6 =9.
end{align}
$endgroup$
Since the polynomial has three roots and its highest degree is 3, we can write
$$
p(x) = (x-alpha)(x-beta)(x-gamma) = x^3 +3x^2 - 2x + 1.
$$
It then follows from
$$
x^3 - (alpha+beta+gamma)x^2 + (alphabeta + beta gamma + gamma alpha)x - alphabeta gamma = x^3+3x^2-2x + 1
$$
that
$$
alpha+beta+gamma = -3, quad alphabeta + beta gamma + gamma alpha = -2, quad
alphabeta gamma = -1.
$$
Note that
$$
-2alpha = alpha(alphabeta + beta gamma + gamma alpha) = alpha^2(beta+gamma) +alphabetagamma = alpha^2(beta+gamma) - 1.
$$
Thus $alpha^2(beta + gamma)=1-2alpha$.
Similarly, $beta^2(alpha + gamma) = 1-2beta$ and $gamma^2(alpha + beta) = 1-2gamma$.
Therefore,
begin{align}
alpha^2(beta + gamma) + beta^2(alpha + gamma) + gamma^2(alpha + beta)
&= (1-2alpha) + (1-2beta) + (1-2gamma) \
&= 3 -2(alpha+beta+gamma) = 3 +6 =9.
end{align}
answered 2 hours ago
induction601induction601
1,226314
1,226314
add a comment |
add a comment |
$begingroup$
Any symmetric (polynomial) function of the roots can be expressed in terms of the Vieta coefficients. Here, check the hint:
$$sum alpha^2(beta+gamma) = (alpha+beta+gamma)(alphabeta+betagamma+gammaalpha)-3alphabetagamma$$
--
In case you want a systematic method to express in terms of elementary symmetric polynomials, check this answer for Gauss' algorithm.
$endgroup$
$begingroup$
Another often useful approach is to transform the polynomial (and / or) the result using the given polynomial. For e.g. $sum alpha^2(beta+gamma) = sumalpha^2(-3-alpha) = sum (-alpha^3-3alpha^2) = sum (-2alpha+1)=-2cdot(-3)+3=9 $
$endgroup$
– Macavity
1 hour ago
add a comment |
$begingroup$
Any symmetric (polynomial) function of the roots can be expressed in terms of the Vieta coefficients. Here, check the hint:
$$sum alpha^2(beta+gamma) = (alpha+beta+gamma)(alphabeta+betagamma+gammaalpha)-3alphabetagamma$$
--
In case you want a systematic method to express in terms of elementary symmetric polynomials, check this answer for Gauss' algorithm.
$endgroup$
$begingroup$
Another often useful approach is to transform the polynomial (and / or) the result using the given polynomial. For e.g. $sum alpha^2(beta+gamma) = sumalpha^2(-3-alpha) = sum (-alpha^3-3alpha^2) = sum (-2alpha+1)=-2cdot(-3)+3=9 $
$endgroup$
– Macavity
1 hour ago
add a comment |
$begingroup$
Any symmetric (polynomial) function of the roots can be expressed in terms of the Vieta coefficients. Here, check the hint:
$$sum alpha^2(beta+gamma) = (alpha+beta+gamma)(alphabeta+betagamma+gammaalpha)-3alphabetagamma$$
--
In case you want a systematic method to express in terms of elementary symmetric polynomials, check this answer for Gauss' algorithm.
$endgroup$
Any symmetric (polynomial) function of the roots can be expressed in terms of the Vieta coefficients. Here, check the hint:
$$sum alpha^2(beta+gamma) = (alpha+beta+gamma)(alphabeta+betagamma+gammaalpha)-3alphabetagamma$$
--
In case you want a systematic method to express in terms of elementary symmetric polynomials, check this answer for Gauss' algorithm.
edited 2 hours ago
answered 2 hours ago
MacavityMacavity
35.5k52554
35.5k52554
$begingroup$
Another often useful approach is to transform the polynomial (and / or) the result using the given polynomial. For e.g. $sum alpha^2(beta+gamma) = sumalpha^2(-3-alpha) = sum (-alpha^3-3alpha^2) = sum (-2alpha+1)=-2cdot(-3)+3=9 $
$endgroup$
– Macavity
1 hour ago
add a comment |
$begingroup$
Another often useful approach is to transform the polynomial (and / or) the result using the given polynomial. For e.g. $sum alpha^2(beta+gamma) = sumalpha^2(-3-alpha) = sum (-alpha^3-3alpha^2) = sum (-2alpha+1)=-2cdot(-3)+3=9 $
$endgroup$
– Macavity
1 hour ago
$begingroup$
Another often useful approach is to transform the polynomial (and / or) the result using the given polynomial. For e.g. $sum alpha^2(beta+gamma) = sumalpha^2(-3-alpha) = sum (-alpha^3-3alpha^2) = sum (-2alpha+1)=-2cdot(-3)+3=9 $
$endgroup$
– Macavity
1 hour ago
$begingroup$
Another often useful approach is to transform the polynomial (and / or) the result using the given polynomial. For e.g. $sum alpha^2(beta+gamma) = sumalpha^2(-3-alpha) = sum (-alpha^3-3alpha^2) = sum (-2alpha+1)=-2cdot(-3)+3=9 $
$endgroup$
– Macavity
1 hour ago
add a comment |
$begingroup$
$a,b,c$ are the three roots.
$$
begin{align}
&a^2*(b+c)+b^2*(a+c)+c^2*(a+b)\
={}&(a+b+c)*(a^2+b^2+c^2)-(a^3+b^3+c^3)\
={}&(-3)*(a^2+b^2+c^2)-(a+b+c)^3\
={}&(-3)*((a+b+c)^2-2ab-2ac-2bc)-(a+b+c) * (a^2+b^2+c^2) + ab(a+b) + ac(a+c) + bc(b+c)\
={}& (-3)*(9-2*(-2))-(-3)*(9-2*(-2)) + ab(a+b+c-c) + ac(a+b+c-b) + bc(a+b+c-a)\
={}&(a+b+c)(ab+ac+bc)-3abc\
={}&(-3)*(-2)-3*(-1)\
={}&6-(-3)\
={}&9
end{align}
$$
New contributor
$endgroup$
5
$begingroup$
Welcome to MSE. Note that I, at least, found what you wrote hard to read. To help make your future math formatting look better, I suggest you read & use what it says in MathJax basic tutorial and quick reference.
$endgroup$
– John Omielan
2 hours ago
add a comment |
$begingroup$
$a,b,c$ are the three roots.
$$
begin{align}
&a^2*(b+c)+b^2*(a+c)+c^2*(a+b)\
={}&(a+b+c)*(a^2+b^2+c^2)-(a^3+b^3+c^3)\
={}&(-3)*(a^2+b^2+c^2)-(a+b+c)^3\
={}&(-3)*((a+b+c)^2-2ab-2ac-2bc)-(a+b+c) * (a^2+b^2+c^2) + ab(a+b) + ac(a+c) + bc(b+c)\
={}& (-3)*(9-2*(-2))-(-3)*(9-2*(-2)) + ab(a+b+c-c) + ac(a+b+c-b) + bc(a+b+c-a)\
={}&(a+b+c)(ab+ac+bc)-3abc\
={}&(-3)*(-2)-3*(-1)\
={}&6-(-3)\
={}&9
end{align}
$$
New contributor
$endgroup$
5
$begingroup$
Welcome to MSE. Note that I, at least, found what you wrote hard to read. To help make your future math formatting look better, I suggest you read & use what it says in MathJax basic tutorial and quick reference.
$endgroup$
– John Omielan
2 hours ago
add a comment |
$begingroup$
$a,b,c$ are the three roots.
$$
begin{align}
&a^2*(b+c)+b^2*(a+c)+c^2*(a+b)\
={}&(a+b+c)*(a^2+b^2+c^2)-(a^3+b^3+c^3)\
={}&(-3)*(a^2+b^2+c^2)-(a+b+c)^3\
={}&(-3)*((a+b+c)^2-2ab-2ac-2bc)-(a+b+c) * (a^2+b^2+c^2) + ab(a+b) + ac(a+c) + bc(b+c)\
={}& (-3)*(9-2*(-2))-(-3)*(9-2*(-2)) + ab(a+b+c-c) + ac(a+b+c-b) + bc(a+b+c-a)\
={}&(a+b+c)(ab+ac+bc)-3abc\
={}&(-3)*(-2)-3*(-1)\
={}&6-(-3)\
={}&9
end{align}
$$
New contributor
$endgroup$
$a,b,c$ are the three roots.
$$
begin{align}
&a^2*(b+c)+b^2*(a+c)+c^2*(a+b)\
={}&(a+b+c)*(a^2+b^2+c^2)-(a^3+b^3+c^3)\
={}&(-3)*(a^2+b^2+c^2)-(a+b+c)^3\
={}&(-3)*((a+b+c)^2-2ab-2ac-2bc)-(a+b+c) * (a^2+b^2+c^2) + ab(a+b) + ac(a+c) + bc(b+c)\
={}& (-3)*(9-2*(-2))-(-3)*(9-2*(-2)) + ab(a+b+c-c) + ac(a+b+c-b) + bc(a+b+c-a)\
={}&(a+b+c)(ab+ac+bc)-3abc\
={}&(-3)*(-2)-3*(-1)\
={}&6-(-3)\
={}&9
end{align}
$$
New contributor
edited 51 mins ago
Brahadeesh
6,46942363
6,46942363
New contributor
answered 2 hours ago
Wentao WangWentao Wang
11
11
New contributor
New contributor
5
$begingroup$
Welcome to MSE. Note that I, at least, found what you wrote hard to read. To help make your future math formatting look better, I suggest you read & use what it says in MathJax basic tutorial and quick reference.
$endgroup$
– John Omielan
2 hours ago
add a comment |
5
$begingroup$
Welcome to MSE. Note that I, at least, found what you wrote hard to read. To help make your future math formatting look better, I suggest you read & use what it says in MathJax basic tutorial and quick reference.
$endgroup$
– John Omielan
2 hours ago
5
5
$begingroup$
Welcome to MSE. Note that I, at least, found what you wrote hard to read. To help make your future math formatting look better, I suggest you read & use what it says in MathJax basic tutorial and quick reference.
$endgroup$
– John Omielan
2 hours ago
$begingroup$
Welcome to MSE. Note that I, at least, found what you wrote hard to read. To help make your future math formatting look better, I suggest you read & use what it says in MathJax basic tutorial and quick reference.
$endgroup$
– John Omielan
2 hours ago
add a comment |
Mmloiler is a new contributor. Be nice, and check out our Code of Conduct.
Mmloiler is a new contributor. Be nice, and check out our Code of Conduct.
Mmloiler is a new contributor. Be nice, and check out our Code of Conduct.
Mmloiler is a new contributor. Be nice, and check out our Code of Conduct.
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3121014%2frelation-between-roots-and-coefficients-manipulation-of-identities%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown