Determine whether or not the following series converge.












1












$begingroup$


$$sum_{k=1}^inftyleft(frac k{k+1}right)^{k^2}$$



Determine whether or not the following series converge.
I am not sure what test to use. I am pretty sure I am unable to use ratio test. Maybe comparison or Kummer, or Raabe. However I am not sure how to start it.










share|cite|improve this question











$endgroup$












  • $begingroup$
    You have an exponent with $k$. Your instinct should be to remove it with the root test.
    $endgroup$
    – Simply Beautiful Art
    3 hours ago










  • $begingroup$
    Since its squared, do I take the k^2 root
    $endgroup$
    – MD3
    3 hours ago










  • $begingroup$
    Does the root test say you take the $k^2$-th root?
    $endgroup$
    – Simply Beautiful Art
    3 hours ago






  • 1




    $begingroup$
    For $kge 1$, we have$$left(frac{k}{k+1}right)^{k^2}le e^{-k/2}$$
    $endgroup$
    – Mark Viola
    3 hours ago
















1












$begingroup$


$$sum_{k=1}^inftyleft(frac k{k+1}right)^{k^2}$$



Determine whether or not the following series converge.
I am not sure what test to use. I am pretty sure I am unable to use ratio test. Maybe comparison or Kummer, or Raabe. However I am not sure how to start it.










share|cite|improve this question











$endgroup$












  • $begingroup$
    You have an exponent with $k$. Your instinct should be to remove it with the root test.
    $endgroup$
    – Simply Beautiful Art
    3 hours ago










  • $begingroup$
    Since its squared, do I take the k^2 root
    $endgroup$
    – MD3
    3 hours ago










  • $begingroup$
    Does the root test say you take the $k^2$-th root?
    $endgroup$
    – Simply Beautiful Art
    3 hours ago






  • 1




    $begingroup$
    For $kge 1$, we have$$left(frac{k}{k+1}right)^{k^2}le e^{-k/2}$$
    $endgroup$
    – Mark Viola
    3 hours ago














1












1








1





$begingroup$


$$sum_{k=1}^inftyleft(frac k{k+1}right)^{k^2}$$



Determine whether or not the following series converge.
I am not sure what test to use. I am pretty sure I am unable to use ratio test. Maybe comparison or Kummer, or Raabe. However I am not sure how to start it.










share|cite|improve this question











$endgroup$




$$sum_{k=1}^inftyleft(frac k{k+1}right)^{k^2}$$



Determine whether or not the following series converge.
I am not sure what test to use. I am pretty sure I am unable to use ratio test. Maybe comparison or Kummer, or Raabe. However I am not sure how to start it.







sequences-and-series convergence






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited 3 hours ago









Simply Beautiful Art

50.9k580186




50.9k580186










asked 3 hours ago









MD3MD3

462




462












  • $begingroup$
    You have an exponent with $k$. Your instinct should be to remove it with the root test.
    $endgroup$
    – Simply Beautiful Art
    3 hours ago










  • $begingroup$
    Since its squared, do I take the k^2 root
    $endgroup$
    – MD3
    3 hours ago










  • $begingroup$
    Does the root test say you take the $k^2$-th root?
    $endgroup$
    – Simply Beautiful Art
    3 hours ago






  • 1




    $begingroup$
    For $kge 1$, we have$$left(frac{k}{k+1}right)^{k^2}le e^{-k/2}$$
    $endgroup$
    – Mark Viola
    3 hours ago


















  • $begingroup$
    You have an exponent with $k$. Your instinct should be to remove it with the root test.
    $endgroup$
    – Simply Beautiful Art
    3 hours ago










  • $begingroup$
    Since its squared, do I take the k^2 root
    $endgroup$
    – MD3
    3 hours ago










  • $begingroup$
    Does the root test say you take the $k^2$-th root?
    $endgroup$
    – Simply Beautiful Art
    3 hours ago






  • 1




    $begingroup$
    For $kge 1$, we have$$left(frac{k}{k+1}right)^{k^2}le e^{-k/2}$$
    $endgroup$
    – Mark Viola
    3 hours ago
















$begingroup$
You have an exponent with $k$. Your instinct should be to remove it with the root test.
$endgroup$
– Simply Beautiful Art
3 hours ago




$begingroup$
You have an exponent with $k$. Your instinct should be to remove it with the root test.
$endgroup$
– Simply Beautiful Art
3 hours ago












$begingroup$
Since its squared, do I take the k^2 root
$endgroup$
– MD3
3 hours ago




$begingroup$
Since its squared, do I take the k^2 root
$endgroup$
– MD3
3 hours ago












$begingroup$
Does the root test say you take the $k^2$-th root?
$endgroup$
– Simply Beautiful Art
3 hours ago




$begingroup$
Does the root test say you take the $k^2$-th root?
$endgroup$
– Simply Beautiful Art
3 hours ago




1




1




$begingroup$
For $kge 1$, we have$$left(frac{k}{k+1}right)^{k^2}le e^{-k/2}$$
$endgroup$
– Mark Viola
3 hours ago




$begingroup$
For $kge 1$, we have$$left(frac{k}{k+1}right)^{k^2}le e^{-k/2}$$
$endgroup$
– Mark Viola
3 hours ago










3 Answers
3






active

oldest

votes


















2












$begingroup$

By Root test, $$limsup_{n to infty} sqrt[n]{left(frac{n}{n+1}right)^{n^2}}=limsup_{n to infty} {left(frac{n}{n+1}right)^{n}}=limsup_{n to infty} {left({1+frac{1}{n}}right)^{-n}}=frac{1}{e}<1$$



So your series converges!






share|cite|improve this answer











$endgroup$













  • $begingroup$
    How did you know to take the supremum
    $endgroup$
    – MD3
    3 hours ago










  • $begingroup$
    See the wiki link!
    $endgroup$
    – Chinnapparaj R
    3 hours ago



















1












$begingroup$

Hint: $$left( frac{k}{k+1} right)^k sim e^{-1} $$






share|cite|improve this answer









$endgroup$





















    0












    $begingroup$

    $$a_k=left(frac k{k+1}right)^{k^2}implies log(a_k)=k^2 logleft(frac k{k+1}right)$$



    $$log(a_{k+1})-log(a_k)=(k+1)^2 log left(frac{k+1}{k+2}right)-k^2 log left(frac{k}{k+1}right)$$ Using Taylor expansions for large $k$
    $$log(a_{k+1})-log(a_k)=-1+frac{1}{3 k^2}+Oleft(frac{1}{k^3}right)$$
    $$frac {a_{k+1}}{a_k}=e^{log(a_{k+1})-log(a_k)}=frac 1 e left(1+frac{1}{3 k^2}+Oleft(frac{1}{k^3}right)right)to frac 1 e $$






    share|cite|improve this answer









    $endgroup$














      Your Answer








      StackExchange.ready(function() {
      var channelOptions = {
      tags: "".split(" "),
      id: "69"
      };
      initTagRenderer("".split(" "), "".split(" "), channelOptions);

      StackExchange.using("externalEditor", function() {
      // Have to fire editor after snippets, if snippets enabled
      if (StackExchange.settings.snippets.snippetsEnabled) {
      StackExchange.using("snippets", function() {
      createEditor();
      });
      }
      else {
      createEditor();
      }
      });

      function createEditor() {
      StackExchange.prepareEditor({
      heartbeatType: 'answer',
      autoActivateHeartbeat: false,
      convertImagesToLinks: true,
      noModals: true,
      showLowRepImageUploadWarning: true,
      reputationToPostImages: 10,
      bindNavPrevention: true,
      postfix: "",
      imageUploader: {
      brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
      contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
      allowUrls: true
      },
      noCode: true, onDemand: true,
      discardSelector: ".discard-answer"
      ,immediatelyShowMarkdownHelp:true
      });


      }
      });














      draft saved

      draft discarded


















      StackExchange.ready(
      function () {
      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3188224%2fdetermine-whether-or-not-the-following-series-converge%23new-answer', 'question_page');
      }
      );

      Post as a guest















      Required, but never shown

























      3 Answers
      3






      active

      oldest

      votes








      3 Answers
      3






      active

      oldest

      votes









      active

      oldest

      votes






      active

      oldest

      votes









      2












      $begingroup$

      By Root test, $$limsup_{n to infty} sqrt[n]{left(frac{n}{n+1}right)^{n^2}}=limsup_{n to infty} {left(frac{n}{n+1}right)^{n}}=limsup_{n to infty} {left({1+frac{1}{n}}right)^{-n}}=frac{1}{e}<1$$



      So your series converges!






      share|cite|improve this answer











      $endgroup$













      • $begingroup$
        How did you know to take the supremum
        $endgroup$
        – MD3
        3 hours ago










      • $begingroup$
        See the wiki link!
        $endgroup$
        – Chinnapparaj R
        3 hours ago
















      2












      $begingroup$

      By Root test, $$limsup_{n to infty} sqrt[n]{left(frac{n}{n+1}right)^{n^2}}=limsup_{n to infty} {left(frac{n}{n+1}right)^{n}}=limsup_{n to infty} {left({1+frac{1}{n}}right)^{-n}}=frac{1}{e}<1$$



      So your series converges!






      share|cite|improve this answer











      $endgroup$













      • $begingroup$
        How did you know to take the supremum
        $endgroup$
        – MD3
        3 hours ago










      • $begingroup$
        See the wiki link!
        $endgroup$
        – Chinnapparaj R
        3 hours ago














      2












      2








      2





      $begingroup$

      By Root test, $$limsup_{n to infty} sqrt[n]{left(frac{n}{n+1}right)^{n^2}}=limsup_{n to infty} {left(frac{n}{n+1}right)^{n}}=limsup_{n to infty} {left({1+frac{1}{n}}right)^{-n}}=frac{1}{e}<1$$



      So your series converges!






      share|cite|improve this answer











      $endgroup$



      By Root test, $$limsup_{n to infty} sqrt[n]{left(frac{n}{n+1}right)^{n^2}}=limsup_{n to infty} {left(frac{n}{n+1}right)^{n}}=limsup_{n to infty} {left({1+frac{1}{n}}right)^{-n}}=frac{1}{e}<1$$



      So your series converges!







      share|cite|improve this answer














      share|cite|improve this answer



      share|cite|improve this answer








      edited 3 hours ago

























      answered 3 hours ago









      Chinnapparaj RChinnapparaj R

      6,54021029




      6,54021029












      • $begingroup$
        How did you know to take the supremum
        $endgroup$
        – MD3
        3 hours ago










      • $begingroup$
        See the wiki link!
        $endgroup$
        – Chinnapparaj R
        3 hours ago


















      • $begingroup$
        How did you know to take the supremum
        $endgroup$
        – MD3
        3 hours ago










      • $begingroup$
        See the wiki link!
        $endgroup$
        – Chinnapparaj R
        3 hours ago
















      $begingroup$
      How did you know to take the supremum
      $endgroup$
      – MD3
      3 hours ago




      $begingroup$
      How did you know to take the supremum
      $endgroup$
      – MD3
      3 hours ago












      $begingroup$
      See the wiki link!
      $endgroup$
      – Chinnapparaj R
      3 hours ago




      $begingroup$
      See the wiki link!
      $endgroup$
      – Chinnapparaj R
      3 hours ago











      1












      $begingroup$

      Hint: $$left( frac{k}{k+1} right)^k sim e^{-1} $$






      share|cite|improve this answer









      $endgroup$


















        1












        $begingroup$

        Hint: $$left( frac{k}{k+1} right)^k sim e^{-1} $$






        share|cite|improve this answer









        $endgroup$
















          1












          1








          1





          $begingroup$

          Hint: $$left( frac{k}{k+1} right)^k sim e^{-1} $$






          share|cite|improve this answer









          $endgroup$



          Hint: $$left( frac{k}{k+1} right)^k sim e^{-1} $$







          share|cite|improve this answer












          share|cite|improve this answer



          share|cite|improve this answer










          answered 3 hours ago









          Robert IsraelRobert Israel

          331k23221478




          331k23221478























              0












              $begingroup$

              $$a_k=left(frac k{k+1}right)^{k^2}implies log(a_k)=k^2 logleft(frac k{k+1}right)$$



              $$log(a_{k+1})-log(a_k)=(k+1)^2 log left(frac{k+1}{k+2}right)-k^2 log left(frac{k}{k+1}right)$$ Using Taylor expansions for large $k$
              $$log(a_{k+1})-log(a_k)=-1+frac{1}{3 k^2}+Oleft(frac{1}{k^3}right)$$
              $$frac {a_{k+1}}{a_k}=e^{log(a_{k+1})-log(a_k)}=frac 1 e left(1+frac{1}{3 k^2}+Oleft(frac{1}{k^3}right)right)to frac 1 e $$






              share|cite|improve this answer









              $endgroup$


















                0












                $begingroup$

                $$a_k=left(frac k{k+1}right)^{k^2}implies log(a_k)=k^2 logleft(frac k{k+1}right)$$



                $$log(a_{k+1})-log(a_k)=(k+1)^2 log left(frac{k+1}{k+2}right)-k^2 log left(frac{k}{k+1}right)$$ Using Taylor expansions for large $k$
                $$log(a_{k+1})-log(a_k)=-1+frac{1}{3 k^2}+Oleft(frac{1}{k^3}right)$$
                $$frac {a_{k+1}}{a_k}=e^{log(a_{k+1})-log(a_k)}=frac 1 e left(1+frac{1}{3 k^2}+Oleft(frac{1}{k^3}right)right)to frac 1 e $$






                share|cite|improve this answer









                $endgroup$
















                  0












                  0








                  0





                  $begingroup$

                  $$a_k=left(frac k{k+1}right)^{k^2}implies log(a_k)=k^2 logleft(frac k{k+1}right)$$



                  $$log(a_{k+1})-log(a_k)=(k+1)^2 log left(frac{k+1}{k+2}right)-k^2 log left(frac{k}{k+1}right)$$ Using Taylor expansions for large $k$
                  $$log(a_{k+1})-log(a_k)=-1+frac{1}{3 k^2}+Oleft(frac{1}{k^3}right)$$
                  $$frac {a_{k+1}}{a_k}=e^{log(a_{k+1})-log(a_k)}=frac 1 e left(1+frac{1}{3 k^2}+Oleft(frac{1}{k^3}right)right)to frac 1 e $$






                  share|cite|improve this answer









                  $endgroup$



                  $$a_k=left(frac k{k+1}right)^{k^2}implies log(a_k)=k^2 logleft(frac k{k+1}right)$$



                  $$log(a_{k+1})-log(a_k)=(k+1)^2 log left(frac{k+1}{k+2}right)-k^2 log left(frac{k}{k+1}right)$$ Using Taylor expansions for large $k$
                  $$log(a_{k+1})-log(a_k)=-1+frac{1}{3 k^2}+Oleft(frac{1}{k^3}right)$$
                  $$frac {a_{k+1}}{a_k}=e^{log(a_{k+1})-log(a_k)}=frac 1 e left(1+frac{1}{3 k^2}+Oleft(frac{1}{k^3}right)right)to frac 1 e $$







                  share|cite|improve this answer












                  share|cite|improve this answer



                  share|cite|improve this answer










                  answered 50 mins ago









                  Claude LeiboviciClaude Leibovici

                  126k1158135




                  126k1158135






























                      draft saved

                      draft discarded




















































                      Thanks for contributing an answer to Mathematics Stack Exchange!


                      • Please be sure to answer the question. Provide details and share your research!

                      But avoid



                      • Asking for help, clarification, or responding to other answers.

                      • Making statements based on opinion; back them up with references or personal experience.


                      Use MathJax to format equations. MathJax reference.


                      To learn more, see our tips on writing great answers.




                      draft saved


                      draft discarded














                      StackExchange.ready(
                      function () {
                      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3188224%2fdetermine-whether-or-not-the-following-series-converge%23new-answer', 'question_page');
                      }
                      );

                      Post as a guest















                      Required, but never shown





















































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown

































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown







                      Popular posts from this blog

                      Olav Thon

                      Waikiki

                      Tårekanal