Homeostasis logic/math problem
$begingroup$
I'm trying to derive a generic formula for a programming algorithm. I might be overthinking this or underthinking it... we'll see.
Each of the triangles below represents a container. Each container will transfer a percentage of whatever is transferred into it to the downstream container until a homeostasis is found.
In the diagram, A, B, and C will transfer 50%, 20%, and 30% respectively of what is transferred into them.
Here's what a few iterations of this looks like. It's important to note that the amount transferred out of a container at a given iteration would only be a percentage of what is transferred in on the last iteration (i.e., NOT the total already in the container). These numbers appear to be going to a limit (and intuitively they have to be), but I'm not sure what the formula should be.
This is a very simple example, but I'm looking for would need to be able to capture more complex scenarios. This could be done with a brute force approach, but I'm hoping there's a simplified method. As containers are added, things can quickly get out of hand. For example, going from 3 containers to 4 and keeping connections between all of them increases the number of connections from 3 to 6 (I believe this would follow the 1, 3, 6, 10, 15, 21... pattern).
Okay, let's see what you've got, SO.
mathematics calculation-puzzle circuitry
New contributor
$endgroup$
add a comment |
$begingroup$
I'm trying to derive a generic formula for a programming algorithm. I might be overthinking this or underthinking it... we'll see.
Each of the triangles below represents a container. Each container will transfer a percentage of whatever is transferred into it to the downstream container until a homeostasis is found.
In the diagram, A, B, and C will transfer 50%, 20%, and 30% respectively of what is transferred into them.
Here's what a few iterations of this looks like. It's important to note that the amount transferred out of a container at a given iteration would only be a percentage of what is transferred in on the last iteration (i.e., NOT the total already in the container). These numbers appear to be going to a limit (and intuitively they have to be), but I'm not sure what the formula should be.
This is a very simple example, but I'm looking for would need to be able to capture more complex scenarios. This could be done with a brute force approach, but I'm hoping there's a simplified method. As containers are added, things can quickly get out of hand. For example, going from 3 containers to 4 and keeping connections between all of them increases the number of connections from 3 to 6 (I believe this would follow the 1, 3, 6, 10, 15, 21... pattern).
Okay, let's see what you've got, SO.
mathematics calculation-puzzle circuitry
New contributor
$endgroup$
add a comment |
$begingroup$
I'm trying to derive a generic formula for a programming algorithm. I might be overthinking this or underthinking it... we'll see.
Each of the triangles below represents a container. Each container will transfer a percentage of whatever is transferred into it to the downstream container until a homeostasis is found.
In the diagram, A, B, and C will transfer 50%, 20%, and 30% respectively of what is transferred into them.
Here's what a few iterations of this looks like. It's important to note that the amount transferred out of a container at a given iteration would only be a percentage of what is transferred in on the last iteration (i.e., NOT the total already in the container). These numbers appear to be going to a limit (and intuitively they have to be), but I'm not sure what the formula should be.
This is a very simple example, but I'm looking for would need to be able to capture more complex scenarios. This could be done with a brute force approach, but I'm hoping there's a simplified method. As containers are added, things can quickly get out of hand. For example, going from 3 containers to 4 and keeping connections between all of them increases the number of connections from 3 to 6 (I believe this would follow the 1, 3, 6, 10, 15, 21... pattern).
Okay, let's see what you've got, SO.
mathematics calculation-puzzle circuitry
New contributor
$endgroup$
I'm trying to derive a generic formula for a programming algorithm. I might be overthinking this or underthinking it... we'll see.
Each of the triangles below represents a container. Each container will transfer a percentage of whatever is transferred into it to the downstream container until a homeostasis is found.
In the diagram, A, B, and C will transfer 50%, 20%, and 30% respectively of what is transferred into them.
Here's what a few iterations of this looks like. It's important to note that the amount transferred out of a container at a given iteration would only be a percentage of what is transferred in on the last iteration (i.e., NOT the total already in the container). These numbers appear to be going to a limit (and intuitively they have to be), but I'm not sure what the formula should be.
This is a very simple example, but I'm looking for would need to be able to capture more complex scenarios. This could be done with a brute force approach, but I'm hoping there's a simplified method. As containers are added, things can quickly get out of hand. For example, going from 3 containers to 4 and keeping connections between all of them increases the number of connections from 3 to 6 (I believe this would follow the 1, 3, 6, 10, 15, 21... pattern).
Okay, let's see what you've got, SO.
mathematics calculation-puzzle circuitry
mathematics calculation-puzzle circuitry
New contributor
New contributor
New contributor
asked 9 mins ago
SuperCodeBrahSuperCodeBrah
101
101
New contributor
New contributor
add a comment |
add a comment |
0
active
oldest
votes
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "559"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: false,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: null,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
SuperCodeBrah is a new contributor. Be nice, and check out our Code of Conduct.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fpuzzling.stackexchange.com%2fquestions%2f79935%2fhomeostasis-logic-math-problem%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
0
active
oldest
votes
0
active
oldest
votes
active
oldest
votes
active
oldest
votes
SuperCodeBrah is a new contributor. Be nice, and check out our Code of Conduct.
SuperCodeBrah is a new contributor. Be nice, and check out our Code of Conduct.
SuperCodeBrah is a new contributor. Be nice, and check out our Code of Conduct.
SuperCodeBrah is a new contributor. Be nice, and check out our Code of Conduct.
Thanks for contributing an answer to Puzzling Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fpuzzling.stackexchange.com%2fquestions%2f79935%2fhomeostasis-logic-math-problem%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown