Parametric curve length - calculus
$begingroup$
Find the length of the following parametric curve.
$x = 5 + frac92 t^3$, $y = 4 + 3 t^{frac92}$, $0 leq t leq 2$.
I used integration and after some point I got lost :( What are the steps?
calculus parametric
$endgroup$
add a comment |
$begingroup$
Find the length of the following parametric curve.
$x = 5 + frac92 t^3$, $y = 4 + 3 t^{frac92}$, $0 leq t leq 2$.
I used integration and after some point I got lost :( What are the steps?
calculus parametric
$endgroup$
$begingroup$
Is this $$x=5+frac{9}{2}t^3,y=4+3t^{9/2}$$?
$endgroup$
– Dr. Sonnhard Graubner
6 hours ago
add a comment |
$begingroup$
Find the length of the following parametric curve.
$x = 5 + frac92 t^3$, $y = 4 + 3 t^{frac92}$, $0 leq t leq 2$.
I used integration and after some point I got lost :( What are the steps?
calculus parametric
$endgroup$
Find the length of the following parametric curve.
$x = 5 + frac92 t^3$, $y = 4 + 3 t^{frac92}$, $0 leq t leq 2$.
I used integration and after some point I got lost :( What are the steps?
calculus parametric
calculus parametric
edited 30 mins ago
Peter Mortensen
565310
565310
asked 6 hours ago
McAMcA
204
204
$begingroup$
Is this $$x=5+frac{9}{2}t^3,y=4+3t^{9/2}$$?
$endgroup$
– Dr. Sonnhard Graubner
6 hours ago
add a comment |
$begingroup$
Is this $$x=5+frac{9}{2}t^3,y=4+3t^{9/2}$$?
$endgroup$
– Dr. Sonnhard Graubner
6 hours ago
$begingroup$
Is this $$x=5+frac{9}{2}t^3,y=4+3t^{9/2}$$?
$endgroup$
– Dr. Sonnhard Graubner
6 hours ago
$begingroup$
Is this $$x=5+frac{9}{2}t^3,y=4+3t^{9/2}$$?
$endgroup$
– Dr. Sonnhard Graubner
6 hours ago
add a comment |
3 Answers
3
active
oldest
votes
$begingroup$
Apply the formula for arc length, we get
$$
int_0^2 frac{27{{t}^{2}},sqrt{{{t}^{3}}+1}}{2} dt
$$
Then we make the change of variable $v=t^3+1$ to get
$$
int_1^9 frac 9 2 sqrt{v} dv = 78.
$$
New contributor
$endgroup$
add a comment |
$begingroup$
begin{aligned}L&=int_0^2 sqrt{frac{729}4t^4+frac{729}4t^7}dt\&=int_0^2sqrt{frac{729}4t^4(1+t^3)}dt\&=frac{27}2int_0^2t^2(1+t^3)^{frac12}dt\&=3(1+t^3)^{frac32}big]_0^2end{aligned}
Made the leap from the third line to the fourth line by recognizing that $F(t)=3(1+t^3)^{frac32}$ is an antiderivative of $f(t)=frac{27}2t^2(1+t^3)^{frac12}$.
$endgroup$
add a comment |
$begingroup$
You must use the formula $$int_{0}^{2}sqrt{left(frac{dx}{dt}right)^2+left(frac{dy}{dt}right)^2}dt$$
$$dx=frac{9}{2}3t^2dt$$ and $$dy=3cdot frac{9}{2}t^{7/2}dt$$
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3167507%2fparametric-curve-length-calculus%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
3 Answers
3
active
oldest
votes
3 Answers
3
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Apply the formula for arc length, we get
$$
int_0^2 frac{27{{t}^{2}},sqrt{{{t}^{3}}+1}}{2} dt
$$
Then we make the change of variable $v=t^3+1$ to get
$$
int_1^9 frac 9 2 sqrt{v} dv = 78.
$$
New contributor
$endgroup$
add a comment |
$begingroup$
Apply the formula for arc length, we get
$$
int_0^2 frac{27{{t}^{2}},sqrt{{{t}^{3}}+1}}{2} dt
$$
Then we make the change of variable $v=t^3+1$ to get
$$
int_1^9 frac 9 2 sqrt{v} dv = 78.
$$
New contributor
$endgroup$
add a comment |
$begingroup$
Apply the formula for arc length, we get
$$
int_0^2 frac{27{{t}^{2}},sqrt{{{t}^{3}}+1}}{2} dt
$$
Then we make the change of variable $v=t^3+1$ to get
$$
int_1^9 frac 9 2 sqrt{v} dv = 78.
$$
New contributor
$endgroup$
Apply the formula for arc length, we get
$$
int_0^2 frac{27{{t}^{2}},sqrt{{{t}^{3}}+1}}{2} dt
$$
Then we make the change of variable $v=t^3+1$ to get
$$
int_1^9 frac 9 2 sqrt{v} dv = 78.
$$
New contributor
New contributor
answered 6 hours ago
EagleToLearnEagleToLearn
233
233
New contributor
New contributor
add a comment |
add a comment |
$begingroup$
begin{aligned}L&=int_0^2 sqrt{frac{729}4t^4+frac{729}4t^7}dt\&=int_0^2sqrt{frac{729}4t^4(1+t^3)}dt\&=frac{27}2int_0^2t^2(1+t^3)^{frac12}dt\&=3(1+t^3)^{frac32}big]_0^2end{aligned}
Made the leap from the third line to the fourth line by recognizing that $F(t)=3(1+t^3)^{frac32}$ is an antiderivative of $f(t)=frac{27}2t^2(1+t^3)^{frac12}$.
$endgroup$
add a comment |
$begingroup$
begin{aligned}L&=int_0^2 sqrt{frac{729}4t^4+frac{729}4t^7}dt\&=int_0^2sqrt{frac{729}4t^4(1+t^3)}dt\&=frac{27}2int_0^2t^2(1+t^3)^{frac12}dt\&=3(1+t^3)^{frac32}big]_0^2end{aligned}
Made the leap from the third line to the fourth line by recognizing that $F(t)=3(1+t^3)^{frac32}$ is an antiderivative of $f(t)=frac{27}2t^2(1+t^3)^{frac12}$.
$endgroup$
add a comment |
$begingroup$
begin{aligned}L&=int_0^2 sqrt{frac{729}4t^4+frac{729}4t^7}dt\&=int_0^2sqrt{frac{729}4t^4(1+t^3)}dt\&=frac{27}2int_0^2t^2(1+t^3)^{frac12}dt\&=3(1+t^3)^{frac32}big]_0^2end{aligned}
Made the leap from the third line to the fourth line by recognizing that $F(t)=3(1+t^3)^{frac32}$ is an antiderivative of $f(t)=frac{27}2t^2(1+t^3)^{frac12}$.
$endgroup$
begin{aligned}L&=int_0^2 sqrt{frac{729}4t^4+frac{729}4t^7}dt\&=int_0^2sqrt{frac{729}4t^4(1+t^3)}dt\&=frac{27}2int_0^2t^2(1+t^3)^{frac12}dt\&=3(1+t^3)^{frac32}big]_0^2end{aligned}
Made the leap from the third line to the fourth line by recognizing that $F(t)=3(1+t^3)^{frac32}$ is an antiderivative of $f(t)=frac{27}2t^2(1+t^3)^{frac12}$.
edited 5 hours ago
answered 5 hours ago
Matt A PeltoMatt A Pelto
2,667621
2,667621
add a comment |
add a comment |
$begingroup$
You must use the formula $$int_{0}^{2}sqrt{left(frac{dx}{dt}right)^2+left(frac{dy}{dt}right)^2}dt$$
$$dx=frac{9}{2}3t^2dt$$ and $$dy=3cdot frac{9}{2}t^{7/2}dt$$
$endgroup$
add a comment |
$begingroup$
You must use the formula $$int_{0}^{2}sqrt{left(frac{dx}{dt}right)^2+left(frac{dy}{dt}right)^2}dt$$
$$dx=frac{9}{2}3t^2dt$$ and $$dy=3cdot frac{9}{2}t^{7/2}dt$$
$endgroup$
add a comment |
$begingroup$
You must use the formula $$int_{0}^{2}sqrt{left(frac{dx}{dt}right)^2+left(frac{dy}{dt}right)^2}dt$$
$$dx=frac{9}{2}3t^2dt$$ and $$dy=3cdot frac{9}{2}t^{7/2}dt$$
$endgroup$
You must use the formula $$int_{0}^{2}sqrt{left(frac{dx}{dt}right)^2+left(frac{dy}{dt}right)^2}dt$$
$$dx=frac{9}{2}3t^2dt$$ and $$dy=3cdot frac{9}{2}t^{7/2}dt$$
answered 6 hours ago
Dr. Sonnhard GraubnerDr. Sonnhard Graubner
78.2k42867
78.2k42867
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3167507%2fparametric-curve-length-calculus%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
Is this $$x=5+frac{9}{2}t^3,y=4+3t^{9/2}$$?
$endgroup$
– Dr. Sonnhard Graubner
6 hours ago