Logic. Truth of a negation












1















If I say:




If I am paid today I'll go to the party tonight




I am saying that if I receive a payment today I will go to the party tonight.



But if I am not paid, can we conclude that I am not going to the party tonight?



I think not, because I have not said anything about what I am going to do if I am not paid.



But if I say:




To go to the party I need money. At this moment I don't have any
money, but if I am paid today I am going to the party tonight.




In this case, can we affirm with absolute certainty, based only on the proposition, that if I am not paid I will not go the party tonight?



In the former case, there is no relation between being paid and going to the party. In the latter case there is.










share|improve this question

























  • If your aunt gives you some money, would you go to the party ? :)

    – rs.29
    15 mins ago
















1















If I say:




If I am paid today I'll go to the party tonight




I am saying that if I receive a payment today I will go to the party tonight.



But if I am not paid, can we conclude that I am not going to the party tonight?



I think not, because I have not said anything about what I am going to do if I am not paid.



But if I say:




To go to the party I need money. At this moment I don't have any
money, but if I am paid today I am going to the party tonight.




In this case, can we affirm with absolute certainty, based only on the proposition, that if I am not paid I will not go the party tonight?



In the former case, there is no relation between being paid and going to the party. In the latter case there is.










share|improve this question

























  • If your aunt gives you some money, would you go to the party ? :)

    – rs.29
    15 mins ago














1












1








1








If I say:




If I am paid today I'll go to the party tonight




I am saying that if I receive a payment today I will go to the party tonight.



But if I am not paid, can we conclude that I am not going to the party tonight?



I think not, because I have not said anything about what I am going to do if I am not paid.



But if I say:




To go to the party I need money. At this moment I don't have any
money, but if I am paid today I am going to the party tonight.




In this case, can we affirm with absolute certainty, based only on the proposition, that if I am not paid I will not go the party tonight?



In the former case, there is no relation between being paid and going to the party. In the latter case there is.










share|improve this question
















If I say:




If I am paid today I'll go to the party tonight




I am saying that if I receive a payment today I will go to the party tonight.



But if I am not paid, can we conclude that I am not going to the party tonight?



I think not, because I have not said anything about what I am going to do if I am not paid.



But if I say:




To go to the party I need money. At this moment I don't have any
money, but if I am paid today I am going to the party tonight.




In this case, can we affirm with absolute certainty, based only on the proposition, that if I am not paid I will not go the party tonight?



In the former case, there is no relation between being paid and going to the party. In the latter case there is.







logic






share|improve this question















share|improve this question













share|improve this question




share|improve this question








edited 2 hours ago









Frank Hubeny

8,72751549




8,72751549










asked 4 hours ago









Carlitos_30Carlitos_30

263




263













  • If your aunt gives you some money, would you go to the party ? :)

    – rs.29
    15 mins ago



















  • If your aunt gives you some money, would you go to the party ? :)

    – rs.29
    15 mins ago

















If your aunt gives you some money, would you go to the party ? :)

– rs.29
15 mins ago





If your aunt gives you some money, would you go to the party ? :)

– rs.29
15 mins ago










2 Answers
2






active

oldest

votes


















3














That depends on your underlying logic, or how you interpret "If ... then". If understood as material implication/conditional (written A → B in logic), which corresponds to the usual mathematical use of "if" as found in mathematical theorems, then from




If I am paid today I'll go to the party tonight




you can not deduce that




If I am paid not today, I'll not go to the party tonight.




In propositional logic, "If A then B" means that in all the situations where A is true, B will be true as well, i.o.w., there are no situations in which A is true but B is false; but this doesn't exclude the possibility that there might be situations where A is false but B is still true. So from (not A) you can not conclude (not B) when given A → B.



Such an inference would require a stronger statement, namely "if and only if":




If and only if I am paid today I'll go to the party tonight




This is called a bi-implication or bi-conditonal, written A ↔ B and means that the situations in which A is true are exactly the situations in which B is true. So if A is false, this will enable you to conclude that B can not be true either.



The question is now whether the usual mathematical interpretation of "if" is indeed the "if" that is used in an ordinary English sentence like yours, i.e. whether a straightforward translation of "If A then B" into A → B with said logical properties is appropriate. There has been heaps of philosophical discussion and psychological research about this, and the short answer is: Depends on the context, but in general interpreing natural language "if" strictly as material implication is too short-sighted, because there are many scenarios in which people use and understand "if" in different ways, and good reasons why they do so. In particular, there are many real-life contexts (and theories about why this is so) in which a natural language "if" is intended and understood as what a logician would call an "if and only if", in which case the inference "If not A, then not B" is valid and intended. W.r.t. to your example, such an interpretation seems plausible, because you presumably intend to say that you need the money to spend at the party, in which case it would by cognitively reasonable to draw the inference that if you don't receive your payment, you won't show up at the party.



So: From a classical logic point of view, no, this inference is not valid; from a psychological/natural language point of view, depends on context, because a natural language "if" is vague, and there can be reasons in favor of either interpretation as A → B (from which we can't make any conclusions about B given that A is false), A ↔ B (from which we could deduce that you're not going to the party given that you're not paid), or something completely different.






share|improve this answer










New contributor




lemontree is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.





















  • Good answer. I think you might mean, in your last paragraph, that "if" is ambiguous, not that it's vague?

    – Eliran
    8 mins ago













  • @Eliran Linguistically speaking, "vagueness" in the sense of underspecification for a certain feature (like bi-/non-bi conditionality) is just a kind of ambiguity, next to ambiguities like homonymy (bank vs. bank etc.) - what definition of "ambiguity" do you presuppose that contradcits "vague"?

    – lemontree
    1 min ago



















0














The question asks if we are given more information, that is, more propositions describing the situation about whether someone will go to the party or not, can we say "with absolute certainty, based only on the proposition, that if I am not paid I will not go the party tonight?"



There may be other conditions that arise that have not been anticipated that may prevent someone from going to the party or allow that person to go to the party even if that person is not paid. We don't know that we have covered everything.



For example, that person might be very tired and not want to go to the party when it is time to go even if the person has been paid. Or friends may say that they will loan the person the money to go to the party or pay the person's way allowing the person to go even if the person has not been paid.



Even assuming we have covered all of the possibilities that might come up, if we assume the person has free will that person may choose not to go to the party even if the person has been paid because there are two alternate possibilities, (1) go to the party or (2) do not go to the party, and, by assumption, the person still has enough free will to choose to do either.






share|improve this answer
























  • I meant assuming nothing, just pure logic. I think there is a difference with the proposition: "if x + a = 2 then x = 2-a" and "if x = 6 then y = 6". In the first case, the negation implies necessarily that that x != 2-a". In the second, the negation doesn't imply that y != 6, because there is no relation between x= 6 and y=6.

    – Carlitos_30
    1 hour ago











  • @Carlitos_30 In the first math example x = 2-a, but in the second we don't know about the relationship between x and y enough to tell what a change in x has to do with y. With the first example, we know everything there is to know and there is no free will involved. In the example about going to the party we don't know everything there is to know and there is free will involved so we can't say with absolute certainty if someone will go to the party.

    – Frank Hubeny
    51 mins ago











Your Answer








StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "265"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});

function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: false,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: null,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});


}
});














draft saved

draft discarded


















StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fphilosophy.stackexchange.com%2fquestions%2f61077%2flogic-truth-of-a-negation%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown

























2 Answers
2






active

oldest

votes








2 Answers
2






active

oldest

votes









active

oldest

votes






active

oldest

votes









3














That depends on your underlying logic, or how you interpret "If ... then". If understood as material implication/conditional (written A → B in logic), which corresponds to the usual mathematical use of "if" as found in mathematical theorems, then from




If I am paid today I'll go to the party tonight




you can not deduce that




If I am paid not today, I'll not go to the party tonight.




In propositional logic, "If A then B" means that in all the situations where A is true, B will be true as well, i.o.w., there are no situations in which A is true but B is false; but this doesn't exclude the possibility that there might be situations where A is false but B is still true. So from (not A) you can not conclude (not B) when given A → B.



Such an inference would require a stronger statement, namely "if and only if":




If and only if I am paid today I'll go to the party tonight




This is called a bi-implication or bi-conditonal, written A ↔ B and means that the situations in which A is true are exactly the situations in which B is true. So if A is false, this will enable you to conclude that B can not be true either.



The question is now whether the usual mathematical interpretation of "if" is indeed the "if" that is used in an ordinary English sentence like yours, i.e. whether a straightforward translation of "If A then B" into A → B with said logical properties is appropriate. There has been heaps of philosophical discussion and psychological research about this, and the short answer is: Depends on the context, but in general interpreing natural language "if" strictly as material implication is too short-sighted, because there are many scenarios in which people use and understand "if" in different ways, and good reasons why they do so. In particular, there are many real-life contexts (and theories about why this is so) in which a natural language "if" is intended and understood as what a logician would call an "if and only if", in which case the inference "If not A, then not B" is valid and intended. W.r.t. to your example, such an interpretation seems plausible, because you presumably intend to say that you need the money to spend at the party, in which case it would by cognitively reasonable to draw the inference that if you don't receive your payment, you won't show up at the party.



So: From a classical logic point of view, no, this inference is not valid; from a psychological/natural language point of view, depends on context, because a natural language "if" is vague, and there can be reasons in favor of either interpretation as A → B (from which we can't make any conclusions about B given that A is false), A ↔ B (from which we could deduce that you're not going to the party given that you're not paid), or something completely different.






share|improve this answer










New contributor




lemontree is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.





















  • Good answer. I think you might mean, in your last paragraph, that "if" is ambiguous, not that it's vague?

    – Eliran
    8 mins ago













  • @Eliran Linguistically speaking, "vagueness" in the sense of underspecification for a certain feature (like bi-/non-bi conditionality) is just a kind of ambiguity, next to ambiguities like homonymy (bank vs. bank etc.) - what definition of "ambiguity" do you presuppose that contradcits "vague"?

    – lemontree
    1 min ago
















3














That depends on your underlying logic, or how you interpret "If ... then". If understood as material implication/conditional (written A → B in logic), which corresponds to the usual mathematical use of "if" as found in mathematical theorems, then from




If I am paid today I'll go to the party tonight




you can not deduce that




If I am paid not today, I'll not go to the party tonight.




In propositional logic, "If A then B" means that in all the situations where A is true, B will be true as well, i.o.w., there are no situations in which A is true but B is false; but this doesn't exclude the possibility that there might be situations where A is false but B is still true. So from (not A) you can not conclude (not B) when given A → B.



Such an inference would require a stronger statement, namely "if and only if":




If and only if I am paid today I'll go to the party tonight




This is called a bi-implication or bi-conditonal, written A ↔ B and means that the situations in which A is true are exactly the situations in which B is true. So if A is false, this will enable you to conclude that B can not be true either.



The question is now whether the usual mathematical interpretation of "if" is indeed the "if" that is used in an ordinary English sentence like yours, i.e. whether a straightforward translation of "If A then B" into A → B with said logical properties is appropriate. There has been heaps of philosophical discussion and psychological research about this, and the short answer is: Depends on the context, but in general interpreing natural language "if" strictly as material implication is too short-sighted, because there are many scenarios in which people use and understand "if" in different ways, and good reasons why they do so. In particular, there are many real-life contexts (and theories about why this is so) in which a natural language "if" is intended and understood as what a logician would call an "if and only if", in which case the inference "If not A, then not B" is valid and intended. W.r.t. to your example, such an interpretation seems plausible, because you presumably intend to say that you need the money to spend at the party, in which case it would by cognitively reasonable to draw the inference that if you don't receive your payment, you won't show up at the party.



So: From a classical logic point of view, no, this inference is not valid; from a psychological/natural language point of view, depends on context, because a natural language "if" is vague, and there can be reasons in favor of either interpretation as A → B (from which we can't make any conclusions about B given that A is false), A ↔ B (from which we could deduce that you're not going to the party given that you're not paid), or something completely different.






share|improve this answer










New contributor




lemontree is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.





















  • Good answer. I think you might mean, in your last paragraph, that "if" is ambiguous, not that it's vague?

    – Eliran
    8 mins ago













  • @Eliran Linguistically speaking, "vagueness" in the sense of underspecification for a certain feature (like bi-/non-bi conditionality) is just a kind of ambiguity, next to ambiguities like homonymy (bank vs. bank etc.) - what definition of "ambiguity" do you presuppose that contradcits "vague"?

    – lemontree
    1 min ago














3












3








3







That depends on your underlying logic, or how you interpret "If ... then". If understood as material implication/conditional (written A → B in logic), which corresponds to the usual mathematical use of "if" as found in mathematical theorems, then from




If I am paid today I'll go to the party tonight




you can not deduce that




If I am paid not today, I'll not go to the party tonight.




In propositional logic, "If A then B" means that in all the situations where A is true, B will be true as well, i.o.w., there are no situations in which A is true but B is false; but this doesn't exclude the possibility that there might be situations where A is false but B is still true. So from (not A) you can not conclude (not B) when given A → B.



Such an inference would require a stronger statement, namely "if and only if":




If and only if I am paid today I'll go to the party tonight




This is called a bi-implication or bi-conditonal, written A ↔ B and means that the situations in which A is true are exactly the situations in which B is true. So if A is false, this will enable you to conclude that B can not be true either.



The question is now whether the usual mathematical interpretation of "if" is indeed the "if" that is used in an ordinary English sentence like yours, i.e. whether a straightforward translation of "If A then B" into A → B with said logical properties is appropriate. There has been heaps of philosophical discussion and psychological research about this, and the short answer is: Depends on the context, but in general interpreing natural language "if" strictly as material implication is too short-sighted, because there are many scenarios in which people use and understand "if" in different ways, and good reasons why they do so. In particular, there are many real-life contexts (and theories about why this is so) in which a natural language "if" is intended and understood as what a logician would call an "if and only if", in which case the inference "If not A, then not B" is valid and intended. W.r.t. to your example, such an interpretation seems plausible, because you presumably intend to say that you need the money to spend at the party, in which case it would by cognitively reasonable to draw the inference that if you don't receive your payment, you won't show up at the party.



So: From a classical logic point of view, no, this inference is not valid; from a psychological/natural language point of view, depends on context, because a natural language "if" is vague, and there can be reasons in favor of either interpretation as A → B (from which we can't make any conclusions about B given that A is false), A ↔ B (from which we could deduce that you're not going to the party given that you're not paid), or something completely different.






share|improve this answer










New contributor




lemontree is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.










That depends on your underlying logic, or how you interpret "If ... then". If understood as material implication/conditional (written A → B in logic), which corresponds to the usual mathematical use of "if" as found in mathematical theorems, then from




If I am paid today I'll go to the party tonight




you can not deduce that




If I am paid not today, I'll not go to the party tonight.




In propositional logic, "If A then B" means that in all the situations where A is true, B will be true as well, i.o.w., there are no situations in which A is true but B is false; but this doesn't exclude the possibility that there might be situations where A is false but B is still true. So from (not A) you can not conclude (not B) when given A → B.



Such an inference would require a stronger statement, namely "if and only if":




If and only if I am paid today I'll go to the party tonight




This is called a bi-implication or bi-conditonal, written A ↔ B and means that the situations in which A is true are exactly the situations in which B is true. So if A is false, this will enable you to conclude that B can not be true either.



The question is now whether the usual mathematical interpretation of "if" is indeed the "if" that is used in an ordinary English sentence like yours, i.e. whether a straightforward translation of "If A then B" into A → B with said logical properties is appropriate. There has been heaps of philosophical discussion and psychological research about this, and the short answer is: Depends on the context, but in general interpreing natural language "if" strictly as material implication is too short-sighted, because there are many scenarios in which people use and understand "if" in different ways, and good reasons why they do so. In particular, there are many real-life contexts (and theories about why this is so) in which a natural language "if" is intended and understood as what a logician would call an "if and only if", in which case the inference "If not A, then not B" is valid and intended. W.r.t. to your example, such an interpretation seems plausible, because you presumably intend to say that you need the money to spend at the party, in which case it would by cognitively reasonable to draw the inference that if you don't receive your payment, you won't show up at the party.



So: From a classical logic point of view, no, this inference is not valid; from a psychological/natural language point of view, depends on context, because a natural language "if" is vague, and there can be reasons in favor of either interpretation as A → B (from which we can't make any conclusions about B given that A is false), A ↔ B (from which we could deduce that you're not going to the party given that you're not paid), or something completely different.







share|improve this answer










New contributor




lemontree is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.









share|improve this answer



share|improve this answer








edited 23 mins ago





















New contributor




lemontree is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.









answered 29 mins ago









lemontreelemontree

1315




1315




New contributor




lemontree is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.





New contributor





lemontree is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.






lemontree is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.













  • Good answer. I think you might mean, in your last paragraph, that "if" is ambiguous, not that it's vague?

    – Eliran
    8 mins ago













  • @Eliran Linguistically speaking, "vagueness" in the sense of underspecification for a certain feature (like bi-/non-bi conditionality) is just a kind of ambiguity, next to ambiguities like homonymy (bank vs. bank etc.) - what definition of "ambiguity" do you presuppose that contradcits "vague"?

    – lemontree
    1 min ago



















  • Good answer. I think you might mean, in your last paragraph, that "if" is ambiguous, not that it's vague?

    – Eliran
    8 mins ago













  • @Eliran Linguistically speaking, "vagueness" in the sense of underspecification for a certain feature (like bi-/non-bi conditionality) is just a kind of ambiguity, next to ambiguities like homonymy (bank vs. bank etc.) - what definition of "ambiguity" do you presuppose that contradcits "vague"?

    – lemontree
    1 min ago

















Good answer. I think you might mean, in your last paragraph, that "if" is ambiguous, not that it's vague?

– Eliran
8 mins ago







Good answer. I think you might mean, in your last paragraph, that "if" is ambiguous, not that it's vague?

– Eliran
8 mins ago















@Eliran Linguistically speaking, "vagueness" in the sense of underspecification for a certain feature (like bi-/non-bi conditionality) is just a kind of ambiguity, next to ambiguities like homonymy (bank vs. bank etc.) - what definition of "ambiguity" do you presuppose that contradcits "vague"?

– lemontree
1 min ago





@Eliran Linguistically speaking, "vagueness" in the sense of underspecification for a certain feature (like bi-/non-bi conditionality) is just a kind of ambiguity, next to ambiguities like homonymy (bank vs. bank etc.) - what definition of "ambiguity" do you presuppose that contradcits "vague"?

– lemontree
1 min ago











0














The question asks if we are given more information, that is, more propositions describing the situation about whether someone will go to the party or not, can we say "with absolute certainty, based only on the proposition, that if I am not paid I will not go the party tonight?"



There may be other conditions that arise that have not been anticipated that may prevent someone from going to the party or allow that person to go to the party even if that person is not paid. We don't know that we have covered everything.



For example, that person might be very tired and not want to go to the party when it is time to go even if the person has been paid. Or friends may say that they will loan the person the money to go to the party or pay the person's way allowing the person to go even if the person has not been paid.



Even assuming we have covered all of the possibilities that might come up, if we assume the person has free will that person may choose not to go to the party even if the person has been paid because there are two alternate possibilities, (1) go to the party or (2) do not go to the party, and, by assumption, the person still has enough free will to choose to do either.






share|improve this answer
























  • I meant assuming nothing, just pure logic. I think there is a difference with the proposition: "if x + a = 2 then x = 2-a" and "if x = 6 then y = 6". In the first case, the negation implies necessarily that that x != 2-a". In the second, the negation doesn't imply that y != 6, because there is no relation between x= 6 and y=6.

    – Carlitos_30
    1 hour ago











  • @Carlitos_30 In the first math example x = 2-a, but in the second we don't know about the relationship between x and y enough to tell what a change in x has to do with y. With the first example, we know everything there is to know and there is no free will involved. In the example about going to the party we don't know everything there is to know and there is free will involved so we can't say with absolute certainty if someone will go to the party.

    – Frank Hubeny
    51 mins ago
















0














The question asks if we are given more information, that is, more propositions describing the situation about whether someone will go to the party or not, can we say "with absolute certainty, based only on the proposition, that if I am not paid I will not go the party tonight?"



There may be other conditions that arise that have not been anticipated that may prevent someone from going to the party or allow that person to go to the party even if that person is not paid. We don't know that we have covered everything.



For example, that person might be very tired and not want to go to the party when it is time to go even if the person has been paid. Or friends may say that they will loan the person the money to go to the party or pay the person's way allowing the person to go even if the person has not been paid.



Even assuming we have covered all of the possibilities that might come up, if we assume the person has free will that person may choose not to go to the party even if the person has been paid because there are two alternate possibilities, (1) go to the party or (2) do not go to the party, and, by assumption, the person still has enough free will to choose to do either.






share|improve this answer
























  • I meant assuming nothing, just pure logic. I think there is a difference with the proposition: "if x + a = 2 then x = 2-a" and "if x = 6 then y = 6". In the first case, the negation implies necessarily that that x != 2-a". In the second, the negation doesn't imply that y != 6, because there is no relation between x= 6 and y=6.

    – Carlitos_30
    1 hour ago











  • @Carlitos_30 In the first math example x = 2-a, but in the second we don't know about the relationship between x and y enough to tell what a change in x has to do with y. With the first example, we know everything there is to know and there is no free will involved. In the example about going to the party we don't know everything there is to know and there is free will involved so we can't say with absolute certainty if someone will go to the party.

    – Frank Hubeny
    51 mins ago














0












0








0







The question asks if we are given more information, that is, more propositions describing the situation about whether someone will go to the party or not, can we say "with absolute certainty, based only on the proposition, that if I am not paid I will not go the party tonight?"



There may be other conditions that arise that have not been anticipated that may prevent someone from going to the party or allow that person to go to the party even if that person is not paid. We don't know that we have covered everything.



For example, that person might be very tired and not want to go to the party when it is time to go even if the person has been paid. Or friends may say that they will loan the person the money to go to the party or pay the person's way allowing the person to go even if the person has not been paid.



Even assuming we have covered all of the possibilities that might come up, if we assume the person has free will that person may choose not to go to the party even if the person has been paid because there are two alternate possibilities, (1) go to the party or (2) do not go to the party, and, by assumption, the person still has enough free will to choose to do either.






share|improve this answer













The question asks if we are given more information, that is, more propositions describing the situation about whether someone will go to the party or not, can we say "with absolute certainty, based only on the proposition, that if I am not paid I will not go the party tonight?"



There may be other conditions that arise that have not been anticipated that may prevent someone from going to the party or allow that person to go to the party even if that person is not paid. We don't know that we have covered everything.



For example, that person might be very tired and not want to go to the party when it is time to go even if the person has been paid. Or friends may say that they will loan the person the money to go to the party or pay the person's way allowing the person to go even if the person has not been paid.



Even assuming we have covered all of the possibilities that might come up, if we assume the person has free will that person may choose not to go to the party even if the person has been paid because there are two alternate possibilities, (1) go to the party or (2) do not go to the party, and, by assumption, the person still has enough free will to choose to do either.







share|improve this answer












share|improve this answer



share|improve this answer










answered 2 hours ago









Frank HubenyFrank Hubeny

8,72751549




8,72751549













  • I meant assuming nothing, just pure logic. I think there is a difference with the proposition: "if x + a = 2 then x = 2-a" and "if x = 6 then y = 6". In the first case, the negation implies necessarily that that x != 2-a". In the second, the negation doesn't imply that y != 6, because there is no relation between x= 6 and y=6.

    – Carlitos_30
    1 hour ago











  • @Carlitos_30 In the first math example x = 2-a, but in the second we don't know about the relationship between x and y enough to tell what a change in x has to do with y. With the first example, we know everything there is to know and there is no free will involved. In the example about going to the party we don't know everything there is to know and there is free will involved so we can't say with absolute certainty if someone will go to the party.

    – Frank Hubeny
    51 mins ago



















  • I meant assuming nothing, just pure logic. I think there is a difference with the proposition: "if x + a = 2 then x = 2-a" and "if x = 6 then y = 6". In the first case, the negation implies necessarily that that x != 2-a". In the second, the negation doesn't imply that y != 6, because there is no relation between x= 6 and y=6.

    – Carlitos_30
    1 hour ago











  • @Carlitos_30 In the first math example x = 2-a, but in the second we don't know about the relationship between x and y enough to tell what a change in x has to do with y. With the first example, we know everything there is to know and there is no free will involved. In the example about going to the party we don't know everything there is to know and there is free will involved so we can't say with absolute certainty if someone will go to the party.

    – Frank Hubeny
    51 mins ago

















I meant assuming nothing, just pure logic. I think there is a difference with the proposition: "if x + a = 2 then x = 2-a" and "if x = 6 then y = 6". In the first case, the negation implies necessarily that that x != 2-a". In the second, the negation doesn't imply that y != 6, because there is no relation between x= 6 and y=6.

– Carlitos_30
1 hour ago





I meant assuming nothing, just pure logic. I think there is a difference with the proposition: "if x + a = 2 then x = 2-a" and "if x = 6 then y = 6". In the first case, the negation implies necessarily that that x != 2-a". In the second, the negation doesn't imply that y != 6, because there is no relation between x= 6 and y=6.

– Carlitos_30
1 hour ago













@Carlitos_30 In the first math example x = 2-a, but in the second we don't know about the relationship between x and y enough to tell what a change in x has to do with y. With the first example, we know everything there is to know and there is no free will involved. In the example about going to the party we don't know everything there is to know and there is free will involved so we can't say with absolute certainty if someone will go to the party.

– Frank Hubeny
51 mins ago





@Carlitos_30 In the first math example x = 2-a, but in the second we don't know about the relationship between x and y enough to tell what a change in x has to do with y. With the first example, we know everything there is to know and there is no free will involved. In the example about going to the party we don't know everything there is to know and there is free will involved so we can't say with absolute certainty if someone will go to the party.

– Frank Hubeny
51 mins ago


















draft saved

draft discarded




















































Thanks for contributing an answer to Philosophy Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fphilosophy.stackexchange.com%2fquestions%2f61077%2flogic-truth-of-a-negation%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

Olav Thon

Waikiki

Tårekanal