Understanding Ceva's Theorem












5












$begingroup$


enter image description here



In Ceva's Theorem, I understand that $frac{A_{triangle PXB}}{A_{triangle PXC}}=frac{BX}{CX}=frac{A_{triangle BXA}}{A_{triangle CXA}}$.



I would like clarification in understanding the following step which states:



$frac{A_{triangle APB}}{A_{triangle APC}}=frac{A_{triangle AXB} - A_{triangle PXB}}{A_{triangle AXC}-A_{triangle PXC}}=frac{BX}{CX}$



How does the subtraction of the two areas make it so that the new triangles are still proportional to $frac{BX}{CX}$? (even though they do not share those sides!)










share|cite|improve this question











$endgroup$

















    5












    $begingroup$


    enter image description here



    In Ceva's Theorem, I understand that $frac{A_{triangle PXB}}{A_{triangle PXC}}=frac{BX}{CX}=frac{A_{triangle BXA}}{A_{triangle CXA}}$.



    I would like clarification in understanding the following step which states:



    $frac{A_{triangle APB}}{A_{triangle APC}}=frac{A_{triangle AXB} - A_{triangle PXB}}{A_{triangle AXC}-A_{triangle PXC}}=frac{BX}{CX}$



    How does the subtraction of the two areas make it so that the new triangles are still proportional to $frac{BX}{CX}$? (even though they do not share those sides!)










    share|cite|improve this question











    $endgroup$















      5












      5








      5


      1



      $begingroup$


      enter image description here



      In Ceva's Theorem, I understand that $frac{A_{triangle PXB}}{A_{triangle PXC}}=frac{BX}{CX}=frac{A_{triangle BXA}}{A_{triangle CXA}}$.



      I would like clarification in understanding the following step which states:



      $frac{A_{triangle APB}}{A_{triangle APC}}=frac{A_{triangle AXB} - A_{triangle PXB}}{A_{triangle AXC}-A_{triangle PXC}}=frac{BX}{CX}$



      How does the subtraction of the two areas make it so that the new triangles are still proportional to $frac{BX}{CX}$? (even though they do not share those sides!)










      share|cite|improve this question











      $endgroup$




      enter image description here



      In Ceva's Theorem, I understand that $frac{A_{triangle PXB}}{A_{triangle PXC}}=frac{BX}{CX}=frac{A_{triangle BXA}}{A_{triangle CXA}}$.



      I would like clarification in understanding the following step which states:



      $frac{A_{triangle APB}}{A_{triangle APC}}=frac{A_{triangle AXB} - A_{triangle PXB}}{A_{triangle AXC}-A_{triangle PXC}}=frac{BX}{CX}$



      How does the subtraction of the two areas make it so that the new triangles are still proportional to $frac{BX}{CX}$? (even though they do not share those sides!)







      geometry proof-verification triangles






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited 2 hours ago









      YuiTo Cheng

      2,48341037




      2,48341037










      asked 2 hours ago









      dragonkingdragonking

      384




      384






















          1 Answer
          1






          active

          oldest

          votes


















          3












          $begingroup$

          $A_{triangle AXB}: A_{triangle AXC}=BX:CXRightarrow A_{triangle AXB}=frac{BX}{CX}A_{triangle AXC}$



          $A_{triangle PXB}: A_{triangle PXC}=BX:CXRightarrow A_{triangle PXB}=frac{BX}{CX}A_{triangle PXC}$



          Hence $$frac{A_{triangle A X B} -A _{triangle P X B}}{A _{triangle A X C}-A_{ triangle P X C}}=frac{frac{BX}{CX}A_{triangle AXC}-frac{BX}{CX}A_{triangle PXC}}{A _{triangle A X C}-A_{ triangle P X C}}=frac{BX}{CX}$$






          share|cite|improve this answer









          $endgroup$














            Your Answer








            StackExchange.ready(function() {
            var channelOptions = {
            tags: "".split(" "),
            id: "69"
            };
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function() {
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled) {
            StackExchange.using("snippets", function() {
            createEditor();
            });
            }
            else {
            createEditor();
            }
            });

            function createEditor() {
            StackExchange.prepareEditor({
            heartbeatType: 'answer',
            autoActivateHeartbeat: false,
            convertImagesToLinks: true,
            noModals: true,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: 10,
            bindNavPrevention: true,
            postfix: "",
            imageUploader: {
            brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
            contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
            allowUrls: true
            },
            noCode: true, onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            });


            }
            });














            draft saved

            draft discarded


















            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3190589%2funderstanding-cevas-theorem%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown

























            1 Answer
            1






            active

            oldest

            votes








            1 Answer
            1






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes









            3












            $begingroup$

            $A_{triangle AXB}: A_{triangle AXC}=BX:CXRightarrow A_{triangle AXB}=frac{BX}{CX}A_{triangle AXC}$



            $A_{triangle PXB}: A_{triangle PXC}=BX:CXRightarrow A_{triangle PXB}=frac{BX}{CX}A_{triangle PXC}$



            Hence $$frac{A_{triangle A X B} -A _{triangle P X B}}{A _{triangle A X C}-A_{ triangle P X C}}=frac{frac{BX}{CX}A_{triangle AXC}-frac{BX}{CX}A_{triangle PXC}}{A _{triangle A X C}-A_{ triangle P X C}}=frac{BX}{CX}$$






            share|cite|improve this answer









            $endgroup$


















              3












              $begingroup$

              $A_{triangle AXB}: A_{triangle AXC}=BX:CXRightarrow A_{triangle AXB}=frac{BX}{CX}A_{triangle AXC}$



              $A_{triangle PXB}: A_{triangle PXC}=BX:CXRightarrow A_{triangle PXB}=frac{BX}{CX}A_{triangle PXC}$



              Hence $$frac{A_{triangle A X B} -A _{triangle P X B}}{A _{triangle A X C}-A_{ triangle P X C}}=frac{frac{BX}{CX}A_{triangle AXC}-frac{BX}{CX}A_{triangle PXC}}{A _{triangle A X C}-A_{ triangle P X C}}=frac{BX}{CX}$$






              share|cite|improve this answer









              $endgroup$
















                3












                3








                3





                $begingroup$

                $A_{triangle AXB}: A_{triangle AXC}=BX:CXRightarrow A_{triangle AXB}=frac{BX}{CX}A_{triangle AXC}$



                $A_{triangle PXB}: A_{triangle PXC}=BX:CXRightarrow A_{triangle PXB}=frac{BX}{CX}A_{triangle PXC}$



                Hence $$frac{A_{triangle A X B} -A _{triangle P X B}}{A _{triangle A X C}-A_{ triangle P X C}}=frac{frac{BX}{CX}A_{triangle AXC}-frac{BX}{CX}A_{triangle PXC}}{A _{triangle A X C}-A_{ triangle P X C}}=frac{BX}{CX}$$






                share|cite|improve this answer









                $endgroup$



                $A_{triangle AXB}: A_{triangle AXC}=BX:CXRightarrow A_{triangle AXB}=frac{BX}{CX}A_{triangle AXC}$



                $A_{triangle PXB}: A_{triangle PXC}=BX:CXRightarrow A_{triangle PXB}=frac{BX}{CX}A_{triangle PXC}$



                Hence $$frac{A_{triangle A X B} -A _{triangle P X B}}{A _{triangle A X C}-A_{ triangle P X C}}=frac{frac{BX}{CX}A_{triangle AXC}-frac{BX}{CX}A_{triangle PXC}}{A _{triangle A X C}-A_{ triangle P X C}}=frac{BX}{CX}$$







                share|cite|improve this answer












                share|cite|improve this answer



                share|cite|improve this answer










                answered 2 hours ago









                YuiTo ChengYuiTo Cheng

                2,48341037




                2,48341037






























                    draft saved

                    draft discarded




















































                    Thanks for contributing an answer to Mathematics Stack Exchange!


                    • Please be sure to answer the question. Provide details and share your research!

                    But avoid



                    • Asking for help, clarification, or responding to other answers.

                    • Making statements based on opinion; back them up with references or personal experience.


                    Use MathJax to format equations. MathJax reference.


                    To learn more, see our tips on writing great answers.




                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function () {
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3190589%2funderstanding-cevas-theorem%23new-answer', 'question_page');
                    }
                    );

                    Post as a guest















                    Required, but never shown





















































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown

































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown







                    Popular posts from this blog

                    Olav Thon

                    Waikiki

                    Tårekanal