The answer of a series with complex variable analysis












2












$begingroup$


We have a series as



$cos(theta)+cos(theta+alpha)+cos(theta+2alpha)+...+cos(theta+nalpha)=U$



How can we make use of complex variable analysis to arrive at the term below which is equivalent to the above series?



$U=frac{sin(frac{n+1}{2}alpha)}{sin(frac{1}{2}alpha)}cos(theta+frac{1}{2}nalpha)$










share|cite|improve this question











$endgroup$

















    2












    $begingroup$


    We have a series as



    $cos(theta)+cos(theta+alpha)+cos(theta+2alpha)+...+cos(theta+nalpha)=U$



    How can we make use of complex variable analysis to arrive at the term below which is equivalent to the above series?



    $U=frac{sin(frac{n+1}{2}alpha)}{sin(frac{1}{2}alpha)}cos(theta+frac{1}{2}nalpha)$










    share|cite|improve this question











    $endgroup$















      2












      2








      2





      $begingroup$


      We have a series as



      $cos(theta)+cos(theta+alpha)+cos(theta+2alpha)+...+cos(theta+nalpha)=U$



      How can we make use of complex variable analysis to arrive at the term below which is equivalent to the above series?



      $U=frac{sin(frac{n+1}{2}alpha)}{sin(frac{1}{2}alpha)}cos(theta+frac{1}{2}nalpha)$










      share|cite|improve this question











      $endgroup$




      We have a series as



      $cos(theta)+cos(theta+alpha)+cos(theta+2alpha)+...+cos(theta+nalpha)=U$



      How can we make use of complex variable analysis to arrive at the term below which is equivalent to the above series?



      $U=frac{sin(frac{n+1}{2}alpha)}{sin(frac{1}{2}alpha)}cos(theta+frac{1}{2}nalpha)$







      sequences-and-series complex-analysis complex-numbers






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited 41 mins ago









      John Doe

      12.1k11340




      12.1k11340










      asked 1 hour ago









      UnbelievableUnbelievable

      1163




      1163






















          1 Answer
          1






          active

          oldest

          votes


















          3












          $begingroup$

          Use the fact that this is almost a geometric series. $$begin{align}U&=mathfrak R[e^{itheta} +e^{itheta+ialpha}+cdots+e^{itheta+inalpha}]\&=mathfrak Rleft[e^{itheta}sum_{j=0}^n e^{ijalpha}right]\&=mathfrak Rleft[e^{itheta}frac{1-e^{i(n+1)alpha}}{1-e^{ialpha}}right]\&=mathfrak Rleft[e^{itheta}frac{e^{-i(n+1)alpha/2}-e^{i(n+1)alpha/2}}{e^{-ialpha/2}-e^{ialpha/2}}e^{inalpha/2}right]\&=mathfrak Rleft[e^{i(nalpha/2+theta)}frac{sin[(n+1)alpha/2]}{sin[alpha/2]}right]\&=cos(theta+tfrac{nalpha}{2})frac{sinleft(frac12(n+1)alpharight)}{sinleft(frac12alpharight)}end{align}$$






          share|cite|improve this answer









          $endgroup$














            Your Answer








            StackExchange.ready(function() {
            var channelOptions = {
            tags: "".split(" "),
            id: "69"
            };
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function() {
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled) {
            StackExchange.using("snippets", function() {
            createEditor();
            });
            }
            else {
            createEditor();
            }
            });

            function createEditor() {
            StackExchange.prepareEditor({
            heartbeatType: 'answer',
            autoActivateHeartbeat: false,
            convertImagesToLinks: true,
            noModals: true,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: 10,
            bindNavPrevention: true,
            postfix: "",
            imageUploader: {
            brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
            contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
            allowUrls: true
            },
            noCode: true, onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            });


            }
            });














            draft saved

            draft discarded


















            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3195401%2fthe-answer-of-a-series-with-complex-variable-analysis%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown

























            1 Answer
            1






            active

            oldest

            votes








            1 Answer
            1






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes









            3












            $begingroup$

            Use the fact that this is almost a geometric series. $$begin{align}U&=mathfrak R[e^{itheta} +e^{itheta+ialpha}+cdots+e^{itheta+inalpha}]\&=mathfrak Rleft[e^{itheta}sum_{j=0}^n e^{ijalpha}right]\&=mathfrak Rleft[e^{itheta}frac{1-e^{i(n+1)alpha}}{1-e^{ialpha}}right]\&=mathfrak Rleft[e^{itheta}frac{e^{-i(n+1)alpha/2}-e^{i(n+1)alpha/2}}{e^{-ialpha/2}-e^{ialpha/2}}e^{inalpha/2}right]\&=mathfrak Rleft[e^{i(nalpha/2+theta)}frac{sin[(n+1)alpha/2]}{sin[alpha/2]}right]\&=cos(theta+tfrac{nalpha}{2})frac{sinleft(frac12(n+1)alpharight)}{sinleft(frac12alpharight)}end{align}$$






            share|cite|improve this answer









            $endgroup$


















              3












              $begingroup$

              Use the fact that this is almost a geometric series. $$begin{align}U&=mathfrak R[e^{itheta} +e^{itheta+ialpha}+cdots+e^{itheta+inalpha}]\&=mathfrak Rleft[e^{itheta}sum_{j=0}^n e^{ijalpha}right]\&=mathfrak Rleft[e^{itheta}frac{1-e^{i(n+1)alpha}}{1-e^{ialpha}}right]\&=mathfrak Rleft[e^{itheta}frac{e^{-i(n+1)alpha/2}-e^{i(n+1)alpha/2}}{e^{-ialpha/2}-e^{ialpha/2}}e^{inalpha/2}right]\&=mathfrak Rleft[e^{i(nalpha/2+theta)}frac{sin[(n+1)alpha/2]}{sin[alpha/2]}right]\&=cos(theta+tfrac{nalpha}{2})frac{sinleft(frac12(n+1)alpharight)}{sinleft(frac12alpharight)}end{align}$$






              share|cite|improve this answer









              $endgroup$
















                3












                3








                3





                $begingroup$

                Use the fact that this is almost a geometric series. $$begin{align}U&=mathfrak R[e^{itheta} +e^{itheta+ialpha}+cdots+e^{itheta+inalpha}]\&=mathfrak Rleft[e^{itheta}sum_{j=0}^n e^{ijalpha}right]\&=mathfrak Rleft[e^{itheta}frac{1-e^{i(n+1)alpha}}{1-e^{ialpha}}right]\&=mathfrak Rleft[e^{itheta}frac{e^{-i(n+1)alpha/2}-e^{i(n+1)alpha/2}}{e^{-ialpha/2}-e^{ialpha/2}}e^{inalpha/2}right]\&=mathfrak Rleft[e^{i(nalpha/2+theta)}frac{sin[(n+1)alpha/2]}{sin[alpha/2]}right]\&=cos(theta+tfrac{nalpha}{2})frac{sinleft(frac12(n+1)alpharight)}{sinleft(frac12alpharight)}end{align}$$






                share|cite|improve this answer









                $endgroup$



                Use the fact that this is almost a geometric series. $$begin{align}U&=mathfrak R[e^{itheta} +e^{itheta+ialpha}+cdots+e^{itheta+inalpha}]\&=mathfrak Rleft[e^{itheta}sum_{j=0}^n e^{ijalpha}right]\&=mathfrak Rleft[e^{itheta}frac{1-e^{i(n+1)alpha}}{1-e^{ialpha}}right]\&=mathfrak Rleft[e^{itheta}frac{e^{-i(n+1)alpha/2}-e^{i(n+1)alpha/2}}{e^{-ialpha/2}-e^{ialpha/2}}e^{inalpha/2}right]\&=mathfrak Rleft[e^{i(nalpha/2+theta)}frac{sin[(n+1)alpha/2]}{sin[alpha/2]}right]\&=cos(theta+tfrac{nalpha}{2})frac{sinleft(frac12(n+1)alpharight)}{sinleft(frac12alpharight)}end{align}$$







                share|cite|improve this answer












                share|cite|improve this answer



                share|cite|improve this answer










                answered 43 mins ago









                dialogdialog

                997




                997






























                    draft saved

                    draft discarded




















































                    Thanks for contributing an answer to Mathematics Stack Exchange!


                    • Please be sure to answer the question. Provide details and share your research!

                    But avoid



                    • Asking for help, clarification, or responding to other answers.

                    • Making statements based on opinion; back them up with references or personal experience.


                    Use MathJax to format equations. MathJax reference.


                    To learn more, see our tips on writing great answers.




                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function () {
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3195401%2fthe-answer-of-a-series-with-complex-variable-analysis%23new-answer', 'question_page');
                    }
                    );

                    Post as a guest















                    Required, but never shown





















































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown

































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown







                    Popular posts from this blog

                    Olav Thon

                    Waikiki

                    Tårekanal