Double Sum over Lattice Points in Circle
$begingroup$
A friend posed the following question to me:
Evaluate the the limit, as $r rightarrow infty $, of the sum $displaystyle sum limits_{(m,n) in C_r}$ $displaystyle (-1)^{m+n} over displaystyle m^2 + n^2$ where the $(m,n)$ are the lattice points in the circle radius $r$ centered at 0.
I expect one would need Poisson summation to turn this into an exponential sum and apply some analytic estimate, but I cannot find any relevant results. Any help and especially, references, would be welcome.
nt.number-theory analytic-number-theory lattices
$endgroup$
add a comment |
$begingroup$
A friend posed the following question to me:
Evaluate the the limit, as $r rightarrow infty $, of the sum $displaystyle sum limits_{(m,n) in C_r}$ $displaystyle (-1)^{m+n} over displaystyle m^2 + n^2$ where the $(m,n)$ are the lattice points in the circle radius $r$ centered at 0.
I expect one would need Poisson summation to turn this into an exponential sum and apply some analytic estimate, but I cannot find any relevant results. Any help and especially, references, would be welcome.
nt.number-theory analytic-number-theory lattices
$endgroup$
$begingroup$
Do you really mean $(m,n)$ on the circle of radius $r$, not inside it? As stated, the absolute value of the sum is at most the number of lattice point on the circle of radius $r$ divided by $r^2$, hence it tends to zero rather quickly.
$endgroup$
– GH from MO
1 hour ago
1
$begingroup$
Summing on $m$ then on $n$ (or the reverse) gives (numerically) $-pilog(2)$. This should be standard.
$endgroup$
– Henri Cohen
1 hour ago
1
$begingroup$
@HenriCohen: Indeed, if $C_r$ denotes the disk of radius $r$ centered at $0$, then the limit equals $-pilog(2)$. I will add the details below soon.
$endgroup$
– GH from MO
1 hour ago
add a comment |
$begingroup$
A friend posed the following question to me:
Evaluate the the limit, as $r rightarrow infty $, of the sum $displaystyle sum limits_{(m,n) in C_r}$ $displaystyle (-1)^{m+n} over displaystyle m^2 + n^2$ where the $(m,n)$ are the lattice points in the circle radius $r$ centered at 0.
I expect one would need Poisson summation to turn this into an exponential sum and apply some analytic estimate, but I cannot find any relevant results. Any help and especially, references, would be welcome.
nt.number-theory analytic-number-theory lattices
$endgroup$
A friend posed the following question to me:
Evaluate the the limit, as $r rightarrow infty $, of the sum $displaystyle sum limits_{(m,n) in C_r}$ $displaystyle (-1)^{m+n} over displaystyle m^2 + n^2$ where the $(m,n)$ are the lattice points in the circle radius $r$ centered at 0.
I expect one would need Poisson summation to turn this into an exponential sum and apply some analytic estimate, but I cannot find any relevant results. Any help and especially, references, would be welcome.
nt.number-theory analytic-number-theory lattices
nt.number-theory analytic-number-theory lattices
edited 1 hour ago
GH from MO
58.3k5145221
58.3k5145221
asked 2 hours ago
Kevin L.Kevin L.
412
412
$begingroup$
Do you really mean $(m,n)$ on the circle of radius $r$, not inside it? As stated, the absolute value of the sum is at most the number of lattice point on the circle of radius $r$ divided by $r^2$, hence it tends to zero rather quickly.
$endgroup$
– GH from MO
1 hour ago
1
$begingroup$
Summing on $m$ then on $n$ (or the reverse) gives (numerically) $-pilog(2)$. This should be standard.
$endgroup$
– Henri Cohen
1 hour ago
1
$begingroup$
@HenriCohen: Indeed, if $C_r$ denotes the disk of radius $r$ centered at $0$, then the limit equals $-pilog(2)$. I will add the details below soon.
$endgroup$
– GH from MO
1 hour ago
add a comment |
$begingroup$
Do you really mean $(m,n)$ on the circle of radius $r$, not inside it? As stated, the absolute value of the sum is at most the number of lattice point on the circle of radius $r$ divided by $r^2$, hence it tends to zero rather quickly.
$endgroup$
– GH from MO
1 hour ago
1
$begingroup$
Summing on $m$ then on $n$ (or the reverse) gives (numerically) $-pilog(2)$. This should be standard.
$endgroup$
– Henri Cohen
1 hour ago
1
$begingroup$
@HenriCohen: Indeed, if $C_r$ denotes the disk of radius $r$ centered at $0$, then the limit equals $-pilog(2)$. I will add the details below soon.
$endgroup$
– GH from MO
1 hour ago
$begingroup$
Do you really mean $(m,n)$ on the circle of radius $r$, not inside it? As stated, the absolute value of the sum is at most the number of lattice point on the circle of radius $r$ divided by $r^2$, hence it tends to zero rather quickly.
$endgroup$
– GH from MO
1 hour ago
$begingroup$
Do you really mean $(m,n)$ on the circle of radius $r$, not inside it? As stated, the absolute value of the sum is at most the number of lattice point on the circle of radius $r$ divided by $r^2$, hence it tends to zero rather quickly.
$endgroup$
– GH from MO
1 hour ago
1
1
$begingroup$
Summing on $m$ then on $n$ (or the reverse) gives (numerically) $-pilog(2)$. This should be standard.
$endgroup$
– Henri Cohen
1 hour ago
$begingroup$
Summing on $m$ then on $n$ (or the reverse) gives (numerically) $-pilog(2)$. This should be standard.
$endgroup$
– Henri Cohen
1 hour ago
1
1
$begingroup$
@HenriCohen: Indeed, if $C_r$ denotes the disk of radius $r$ centered at $0$, then the limit equals $-pilog(2)$. I will add the details below soon.
$endgroup$
– GH from MO
1 hour ago
$begingroup$
@HenriCohen: Indeed, if $C_r$ denotes the disk of radius $r$ centered at $0$, then the limit equals $-pilog(2)$. I will add the details below soon.
$endgroup$
– GH from MO
1 hour ago
add a comment |
3 Answers
3
active
oldest
votes
$begingroup$
It is problem number 10 of IMC 2018, you may find the solution on the official site.
$endgroup$
$begingroup$
Too bad, I am not following these math competitions. I added my own (pretty standard) calculation below.
$endgroup$
– GH from MO
39 mins ago
2
$begingroup$
@GHfromMO It is quite interesting (for me) that all the number theory used for example in your solution may be replaced by applying the linear change of variables. By the way, another standard way to calculate this sum compared to the genuine answer gives the nice, of course known, formula $2^{1/4}e^{-pi/24}=(1+e^{-pi})(1+e^{-3pi})(1+e^{-5pi})dots$.
$endgroup$
– Fedor Petrov
28 mins ago
$begingroup$
Yes, I was also surprised by the elementary nature of the official solution. Of course I like my solution better :-)
$endgroup$
– GH from MO
5 mins ago
add a comment |
$begingroup$
Assuming convergence, here goes:
let $r_2(k)$ denote the number of ways a number $kinmathbb{N}$ can be written
as the sum of squares of two integers. Then, we compute
$$sum_{(0,0)neq(m,n)inmathbb{Z}^2}frac{(-1)^{m+n}}{m^2+n^2}=sum_{k=1}^{infty}(-1)^kfrac{r_2(k)}k.$$
It is known that
$$r_2(k)=4sum_{dvert k}left(frac{-4}kright)=4left(1*left(frac{-4}kright)right)(k)$$
where $left(frac{a}bright)$ is the Jacobi symbol. Using $left(frac{-4}{2k}right)=0$ and $left(frac{-4}{2k+1}right)=(-1)^k$ it follows that
begin{align} sum_{k=1}^{infty}(-1)^kfrac{r_2(k)}k
&=4sum_{k=1}^{infty}(-1)^kfrac{(1*left(frac{-4}kright)(k)}k \
&=4sum_{n=1}^{infty}frac{(-1)^n}nsum_{k=1}^{infty}(-1)^kfrac{left(frac{-4}kright)(k)}k \
&=4sum_{n=1}^{infty}frac{(-1)^n}nsum_{m=0}^{infty}frac{(-1)^m}{2m+1} \
&=4(-log(2))left(frac{pi}4right) \
&=-pi,log(2),
end{align}
which confrims Henri Cohen's guesstimate.
$endgroup$
add a comment |
$begingroup$
I think the OP meant that $C_r$ is the disk ${(x,y)inmathbb{R}^2:x^2+y^2leq r^2}$. If this is the case, then the limit equals $-pilog(2)$, in accordance with Henri Cohen's remark above.
For the proof we combine the formula
$$r_2(k):=#{(m,n)inmathbb{Z}^2:m^2+n^2=k}=4sum_{dmid k}chi_4(d)$$
with Dirichlet's hyperbola method. Here, $chi_4$ denotes the nontrivial Dirichlet character modulo $4$. With this notation and the above interpretation for $C_r$, the OP's sum equals
$$sum_{kleq r^2}frac{(-1)^kr_2(k)}{k}=4sum_{deleq r^2}frac{(-1)^{e}chi_4(d)}{de}.$$
We shall now use the well-known facts that
$$sum_{d=1}^inftyfrac{chi_4(d)}{d}=frac{pi}{4}
qquadtext{and}qquad
sum_{e=1}^inftyfrac{(-1)^e}{e}=-log 2,$$
where both series are alternating. Using this observation,
begin{align*}
sum_{deleq r^2}frac{(-1)^{e}chi_4(d)}{de}
=&sum_{substack{dleq r\eleq r^2/d}}frac{(-1)^{e}chi_4(d)}{de}
+sum_{substack{eleq r\dleq r^2/e}}frac{(-1)^{e}chi_4(d)}{de}-
sum_{d,eleq r}frac{(-1)^{e}chi_4(d)}{de}\
=&sum_{dleq r}frac{chi_4(d)}{d}left(-log 2+Oleft(frac{d}{r^2}right)right)\
&+sum_{eleq r}frac{(-1)^e}{e}left(frac{pi}{4}+Oleft(frac{e}{r^2}right)right)\
&-left(sum_{dleq r}frac{chi_4(d)}{d}right)
left(sum_{eleq r}frac{(-1)^e}{e}right)\
=&-log 2sum_{dleq r}frac{chi_4(d)}{d}+frac{pi}{4}sum_{eleq r}frac{(-1)^e}{e}+frac{pi}{4}log 2+Oleft(r^{-1}right)\
=&-frac{pi}{4}log 2-frac{pi}{4}log 2+frac{pi}{4}log 2+Oleft(r^{-1}right)\
=&-frac{pi}{4}log 2+Oleft(r^{-1}right).
end{align*}
Therefore, the OP's sum is
$$sum_{kleq r^2}frac{(-1)^kr_2(k)}{k}=-pilog 2+Oleft(r^{-1}right).$$
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "504"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathoverflow.net%2fquestions%2f321839%2fdouble-sum-over-lattice-points-in-circle%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
3 Answers
3
active
oldest
votes
3 Answers
3
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
It is problem number 10 of IMC 2018, you may find the solution on the official site.
$endgroup$
$begingroup$
Too bad, I am not following these math competitions. I added my own (pretty standard) calculation below.
$endgroup$
– GH from MO
39 mins ago
2
$begingroup$
@GHfromMO It is quite interesting (for me) that all the number theory used for example in your solution may be replaced by applying the linear change of variables. By the way, another standard way to calculate this sum compared to the genuine answer gives the nice, of course known, formula $2^{1/4}e^{-pi/24}=(1+e^{-pi})(1+e^{-3pi})(1+e^{-5pi})dots$.
$endgroup$
– Fedor Petrov
28 mins ago
$begingroup$
Yes, I was also surprised by the elementary nature of the official solution. Of course I like my solution better :-)
$endgroup$
– GH from MO
5 mins ago
add a comment |
$begingroup$
It is problem number 10 of IMC 2018, you may find the solution on the official site.
$endgroup$
$begingroup$
Too bad, I am not following these math competitions. I added my own (pretty standard) calculation below.
$endgroup$
– GH from MO
39 mins ago
2
$begingroup$
@GHfromMO It is quite interesting (for me) that all the number theory used for example in your solution may be replaced by applying the linear change of variables. By the way, another standard way to calculate this sum compared to the genuine answer gives the nice, of course known, formula $2^{1/4}e^{-pi/24}=(1+e^{-pi})(1+e^{-3pi})(1+e^{-5pi})dots$.
$endgroup$
– Fedor Petrov
28 mins ago
$begingroup$
Yes, I was also surprised by the elementary nature of the official solution. Of course I like my solution better :-)
$endgroup$
– GH from MO
5 mins ago
add a comment |
$begingroup$
It is problem number 10 of IMC 2018, you may find the solution on the official site.
$endgroup$
It is problem number 10 of IMC 2018, you may find the solution on the official site.
answered 50 mins ago
Fedor PetrovFedor Petrov
48.5k5112225
48.5k5112225
$begingroup$
Too bad, I am not following these math competitions. I added my own (pretty standard) calculation below.
$endgroup$
– GH from MO
39 mins ago
2
$begingroup$
@GHfromMO It is quite interesting (for me) that all the number theory used for example in your solution may be replaced by applying the linear change of variables. By the way, another standard way to calculate this sum compared to the genuine answer gives the nice, of course known, formula $2^{1/4}e^{-pi/24}=(1+e^{-pi})(1+e^{-3pi})(1+e^{-5pi})dots$.
$endgroup$
– Fedor Petrov
28 mins ago
$begingroup$
Yes, I was also surprised by the elementary nature of the official solution. Of course I like my solution better :-)
$endgroup$
– GH from MO
5 mins ago
add a comment |
$begingroup$
Too bad, I am not following these math competitions. I added my own (pretty standard) calculation below.
$endgroup$
– GH from MO
39 mins ago
2
$begingroup$
@GHfromMO It is quite interesting (for me) that all the number theory used for example in your solution may be replaced by applying the linear change of variables. By the way, another standard way to calculate this sum compared to the genuine answer gives the nice, of course known, formula $2^{1/4}e^{-pi/24}=(1+e^{-pi})(1+e^{-3pi})(1+e^{-5pi})dots$.
$endgroup$
– Fedor Petrov
28 mins ago
$begingroup$
Yes, I was also surprised by the elementary nature of the official solution. Of course I like my solution better :-)
$endgroup$
– GH from MO
5 mins ago
$begingroup$
Too bad, I am not following these math competitions. I added my own (pretty standard) calculation below.
$endgroup$
– GH from MO
39 mins ago
$begingroup$
Too bad, I am not following these math competitions. I added my own (pretty standard) calculation below.
$endgroup$
– GH from MO
39 mins ago
2
2
$begingroup$
@GHfromMO It is quite interesting (for me) that all the number theory used for example in your solution may be replaced by applying the linear change of variables. By the way, another standard way to calculate this sum compared to the genuine answer gives the nice, of course known, formula $2^{1/4}e^{-pi/24}=(1+e^{-pi})(1+e^{-3pi})(1+e^{-5pi})dots$.
$endgroup$
– Fedor Petrov
28 mins ago
$begingroup$
@GHfromMO It is quite interesting (for me) that all the number theory used for example in your solution may be replaced by applying the linear change of variables. By the way, another standard way to calculate this sum compared to the genuine answer gives the nice, of course known, formula $2^{1/4}e^{-pi/24}=(1+e^{-pi})(1+e^{-3pi})(1+e^{-5pi})dots$.
$endgroup$
– Fedor Petrov
28 mins ago
$begingroup$
Yes, I was also surprised by the elementary nature of the official solution. Of course I like my solution better :-)
$endgroup$
– GH from MO
5 mins ago
$begingroup$
Yes, I was also surprised by the elementary nature of the official solution. Of course I like my solution better :-)
$endgroup$
– GH from MO
5 mins ago
add a comment |
$begingroup$
Assuming convergence, here goes:
let $r_2(k)$ denote the number of ways a number $kinmathbb{N}$ can be written
as the sum of squares of two integers. Then, we compute
$$sum_{(0,0)neq(m,n)inmathbb{Z}^2}frac{(-1)^{m+n}}{m^2+n^2}=sum_{k=1}^{infty}(-1)^kfrac{r_2(k)}k.$$
It is known that
$$r_2(k)=4sum_{dvert k}left(frac{-4}kright)=4left(1*left(frac{-4}kright)right)(k)$$
where $left(frac{a}bright)$ is the Jacobi symbol. Using $left(frac{-4}{2k}right)=0$ and $left(frac{-4}{2k+1}right)=(-1)^k$ it follows that
begin{align} sum_{k=1}^{infty}(-1)^kfrac{r_2(k)}k
&=4sum_{k=1}^{infty}(-1)^kfrac{(1*left(frac{-4}kright)(k)}k \
&=4sum_{n=1}^{infty}frac{(-1)^n}nsum_{k=1}^{infty}(-1)^kfrac{left(frac{-4}kright)(k)}k \
&=4sum_{n=1}^{infty}frac{(-1)^n}nsum_{m=0}^{infty}frac{(-1)^m}{2m+1} \
&=4(-log(2))left(frac{pi}4right) \
&=-pi,log(2),
end{align}
which confrims Henri Cohen's guesstimate.
$endgroup$
add a comment |
$begingroup$
Assuming convergence, here goes:
let $r_2(k)$ denote the number of ways a number $kinmathbb{N}$ can be written
as the sum of squares of two integers. Then, we compute
$$sum_{(0,0)neq(m,n)inmathbb{Z}^2}frac{(-1)^{m+n}}{m^2+n^2}=sum_{k=1}^{infty}(-1)^kfrac{r_2(k)}k.$$
It is known that
$$r_2(k)=4sum_{dvert k}left(frac{-4}kright)=4left(1*left(frac{-4}kright)right)(k)$$
where $left(frac{a}bright)$ is the Jacobi symbol. Using $left(frac{-4}{2k}right)=0$ and $left(frac{-4}{2k+1}right)=(-1)^k$ it follows that
begin{align} sum_{k=1}^{infty}(-1)^kfrac{r_2(k)}k
&=4sum_{k=1}^{infty}(-1)^kfrac{(1*left(frac{-4}kright)(k)}k \
&=4sum_{n=1}^{infty}frac{(-1)^n}nsum_{k=1}^{infty}(-1)^kfrac{left(frac{-4}kright)(k)}k \
&=4sum_{n=1}^{infty}frac{(-1)^n}nsum_{m=0}^{infty}frac{(-1)^m}{2m+1} \
&=4(-log(2))left(frac{pi}4right) \
&=-pi,log(2),
end{align}
which confrims Henri Cohen's guesstimate.
$endgroup$
add a comment |
$begingroup$
Assuming convergence, here goes:
let $r_2(k)$ denote the number of ways a number $kinmathbb{N}$ can be written
as the sum of squares of two integers. Then, we compute
$$sum_{(0,0)neq(m,n)inmathbb{Z}^2}frac{(-1)^{m+n}}{m^2+n^2}=sum_{k=1}^{infty}(-1)^kfrac{r_2(k)}k.$$
It is known that
$$r_2(k)=4sum_{dvert k}left(frac{-4}kright)=4left(1*left(frac{-4}kright)right)(k)$$
where $left(frac{a}bright)$ is the Jacobi symbol. Using $left(frac{-4}{2k}right)=0$ and $left(frac{-4}{2k+1}right)=(-1)^k$ it follows that
begin{align} sum_{k=1}^{infty}(-1)^kfrac{r_2(k)}k
&=4sum_{k=1}^{infty}(-1)^kfrac{(1*left(frac{-4}kright)(k)}k \
&=4sum_{n=1}^{infty}frac{(-1)^n}nsum_{k=1}^{infty}(-1)^kfrac{left(frac{-4}kright)(k)}k \
&=4sum_{n=1}^{infty}frac{(-1)^n}nsum_{m=0}^{infty}frac{(-1)^m}{2m+1} \
&=4(-log(2))left(frac{pi}4right) \
&=-pi,log(2),
end{align}
which confrims Henri Cohen's guesstimate.
$endgroup$
Assuming convergence, here goes:
let $r_2(k)$ denote the number of ways a number $kinmathbb{N}$ can be written
as the sum of squares of two integers. Then, we compute
$$sum_{(0,0)neq(m,n)inmathbb{Z}^2}frac{(-1)^{m+n}}{m^2+n^2}=sum_{k=1}^{infty}(-1)^kfrac{r_2(k)}k.$$
It is known that
$$r_2(k)=4sum_{dvert k}left(frac{-4}kright)=4left(1*left(frac{-4}kright)right)(k)$$
where $left(frac{a}bright)$ is the Jacobi symbol. Using $left(frac{-4}{2k}right)=0$ and $left(frac{-4}{2k+1}right)=(-1)^k$ it follows that
begin{align} sum_{k=1}^{infty}(-1)^kfrac{r_2(k)}k
&=4sum_{k=1}^{infty}(-1)^kfrac{(1*left(frac{-4}kright)(k)}k \
&=4sum_{n=1}^{infty}frac{(-1)^n}nsum_{k=1}^{infty}(-1)^kfrac{left(frac{-4}kright)(k)}k \
&=4sum_{n=1}^{infty}frac{(-1)^n}nsum_{m=0}^{infty}frac{(-1)^m}{2m+1} \
&=4(-log(2))left(frac{pi}4right) \
&=-pi,log(2),
end{align}
which confrims Henri Cohen's guesstimate.
answered 47 mins ago
T. AmdeberhanT. Amdeberhan
17.2k229127
17.2k229127
add a comment |
add a comment |
$begingroup$
I think the OP meant that $C_r$ is the disk ${(x,y)inmathbb{R}^2:x^2+y^2leq r^2}$. If this is the case, then the limit equals $-pilog(2)$, in accordance with Henri Cohen's remark above.
For the proof we combine the formula
$$r_2(k):=#{(m,n)inmathbb{Z}^2:m^2+n^2=k}=4sum_{dmid k}chi_4(d)$$
with Dirichlet's hyperbola method. Here, $chi_4$ denotes the nontrivial Dirichlet character modulo $4$. With this notation and the above interpretation for $C_r$, the OP's sum equals
$$sum_{kleq r^2}frac{(-1)^kr_2(k)}{k}=4sum_{deleq r^2}frac{(-1)^{e}chi_4(d)}{de}.$$
We shall now use the well-known facts that
$$sum_{d=1}^inftyfrac{chi_4(d)}{d}=frac{pi}{4}
qquadtext{and}qquad
sum_{e=1}^inftyfrac{(-1)^e}{e}=-log 2,$$
where both series are alternating. Using this observation,
begin{align*}
sum_{deleq r^2}frac{(-1)^{e}chi_4(d)}{de}
=&sum_{substack{dleq r\eleq r^2/d}}frac{(-1)^{e}chi_4(d)}{de}
+sum_{substack{eleq r\dleq r^2/e}}frac{(-1)^{e}chi_4(d)}{de}-
sum_{d,eleq r}frac{(-1)^{e}chi_4(d)}{de}\
=&sum_{dleq r}frac{chi_4(d)}{d}left(-log 2+Oleft(frac{d}{r^2}right)right)\
&+sum_{eleq r}frac{(-1)^e}{e}left(frac{pi}{4}+Oleft(frac{e}{r^2}right)right)\
&-left(sum_{dleq r}frac{chi_4(d)}{d}right)
left(sum_{eleq r}frac{(-1)^e}{e}right)\
=&-log 2sum_{dleq r}frac{chi_4(d)}{d}+frac{pi}{4}sum_{eleq r}frac{(-1)^e}{e}+frac{pi}{4}log 2+Oleft(r^{-1}right)\
=&-frac{pi}{4}log 2-frac{pi}{4}log 2+frac{pi}{4}log 2+Oleft(r^{-1}right)\
=&-frac{pi}{4}log 2+Oleft(r^{-1}right).
end{align*}
Therefore, the OP's sum is
$$sum_{kleq r^2}frac{(-1)^kr_2(k)}{k}=-pilog 2+Oleft(r^{-1}right).$$
$endgroup$
add a comment |
$begingroup$
I think the OP meant that $C_r$ is the disk ${(x,y)inmathbb{R}^2:x^2+y^2leq r^2}$. If this is the case, then the limit equals $-pilog(2)$, in accordance with Henri Cohen's remark above.
For the proof we combine the formula
$$r_2(k):=#{(m,n)inmathbb{Z}^2:m^2+n^2=k}=4sum_{dmid k}chi_4(d)$$
with Dirichlet's hyperbola method. Here, $chi_4$ denotes the nontrivial Dirichlet character modulo $4$. With this notation and the above interpretation for $C_r$, the OP's sum equals
$$sum_{kleq r^2}frac{(-1)^kr_2(k)}{k}=4sum_{deleq r^2}frac{(-1)^{e}chi_4(d)}{de}.$$
We shall now use the well-known facts that
$$sum_{d=1}^inftyfrac{chi_4(d)}{d}=frac{pi}{4}
qquadtext{and}qquad
sum_{e=1}^inftyfrac{(-1)^e}{e}=-log 2,$$
where both series are alternating. Using this observation,
begin{align*}
sum_{deleq r^2}frac{(-1)^{e}chi_4(d)}{de}
=&sum_{substack{dleq r\eleq r^2/d}}frac{(-1)^{e}chi_4(d)}{de}
+sum_{substack{eleq r\dleq r^2/e}}frac{(-1)^{e}chi_4(d)}{de}-
sum_{d,eleq r}frac{(-1)^{e}chi_4(d)}{de}\
=&sum_{dleq r}frac{chi_4(d)}{d}left(-log 2+Oleft(frac{d}{r^2}right)right)\
&+sum_{eleq r}frac{(-1)^e}{e}left(frac{pi}{4}+Oleft(frac{e}{r^2}right)right)\
&-left(sum_{dleq r}frac{chi_4(d)}{d}right)
left(sum_{eleq r}frac{(-1)^e}{e}right)\
=&-log 2sum_{dleq r}frac{chi_4(d)}{d}+frac{pi}{4}sum_{eleq r}frac{(-1)^e}{e}+frac{pi}{4}log 2+Oleft(r^{-1}right)\
=&-frac{pi}{4}log 2-frac{pi}{4}log 2+frac{pi}{4}log 2+Oleft(r^{-1}right)\
=&-frac{pi}{4}log 2+Oleft(r^{-1}right).
end{align*}
Therefore, the OP's sum is
$$sum_{kleq r^2}frac{(-1)^kr_2(k)}{k}=-pilog 2+Oleft(r^{-1}right).$$
$endgroup$
add a comment |
$begingroup$
I think the OP meant that $C_r$ is the disk ${(x,y)inmathbb{R}^2:x^2+y^2leq r^2}$. If this is the case, then the limit equals $-pilog(2)$, in accordance with Henri Cohen's remark above.
For the proof we combine the formula
$$r_2(k):=#{(m,n)inmathbb{Z}^2:m^2+n^2=k}=4sum_{dmid k}chi_4(d)$$
with Dirichlet's hyperbola method. Here, $chi_4$ denotes the nontrivial Dirichlet character modulo $4$. With this notation and the above interpretation for $C_r$, the OP's sum equals
$$sum_{kleq r^2}frac{(-1)^kr_2(k)}{k}=4sum_{deleq r^2}frac{(-1)^{e}chi_4(d)}{de}.$$
We shall now use the well-known facts that
$$sum_{d=1}^inftyfrac{chi_4(d)}{d}=frac{pi}{4}
qquadtext{and}qquad
sum_{e=1}^inftyfrac{(-1)^e}{e}=-log 2,$$
where both series are alternating. Using this observation,
begin{align*}
sum_{deleq r^2}frac{(-1)^{e}chi_4(d)}{de}
=&sum_{substack{dleq r\eleq r^2/d}}frac{(-1)^{e}chi_4(d)}{de}
+sum_{substack{eleq r\dleq r^2/e}}frac{(-1)^{e}chi_4(d)}{de}-
sum_{d,eleq r}frac{(-1)^{e}chi_4(d)}{de}\
=&sum_{dleq r}frac{chi_4(d)}{d}left(-log 2+Oleft(frac{d}{r^2}right)right)\
&+sum_{eleq r}frac{(-1)^e}{e}left(frac{pi}{4}+Oleft(frac{e}{r^2}right)right)\
&-left(sum_{dleq r}frac{chi_4(d)}{d}right)
left(sum_{eleq r}frac{(-1)^e}{e}right)\
=&-log 2sum_{dleq r}frac{chi_4(d)}{d}+frac{pi}{4}sum_{eleq r}frac{(-1)^e}{e}+frac{pi}{4}log 2+Oleft(r^{-1}right)\
=&-frac{pi}{4}log 2-frac{pi}{4}log 2+frac{pi}{4}log 2+Oleft(r^{-1}right)\
=&-frac{pi}{4}log 2+Oleft(r^{-1}right).
end{align*}
Therefore, the OP's sum is
$$sum_{kleq r^2}frac{(-1)^kr_2(k)}{k}=-pilog 2+Oleft(r^{-1}right).$$
$endgroup$
I think the OP meant that $C_r$ is the disk ${(x,y)inmathbb{R}^2:x^2+y^2leq r^2}$. If this is the case, then the limit equals $-pilog(2)$, in accordance with Henri Cohen's remark above.
For the proof we combine the formula
$$r_2(k):=#{(m,n)inmathbb{Z}^2:m^2+n^2=k}=4sum_{dmid k}chi_4(d)$$
with Dirichlet's hyperbola method. Here, $chi_4$ denotes the nontrivial Dirichlet character modulo $4$. With this notation and the above interpretation for $C_r$, the OP's sum equals
$$sum_{kleq r^2}frac{(-1)^kr_2(k)}{k}=4sum_{deleq r^2}frac{(-1)^{e}chi_4(d)}{de}.$$
We shall now use the well-known facts that
$$sum_{d=1}^inftyfrac{chi_4(d)}{d}=frac{pi}{4}
qquadtext{and}qquad
sum_{e=1}^inftyfrac{(-1)^e}{e}=-log 2,$$
where both series are alternating. Using this observation,
begin{align*}
sum_{deleq r^2}frac{(-1)^{e}chi_4(d)}{de}
=&sum_{substack{dleq r\eleq r^2/d}}frac{(-1)^{e}chi_4(d)}{de}
+sum_{substack{eleq r\dleq r^2/e}}frac{(-1)^{e}chi_4(d)}{de}-
sum_{d,eleq r}frac{(-1)^{e}chi_4(d)}{de}\
=&sum_{dleq r}frac{chi_4(d)}{d}left(-log 2+Oleft(frac{d}{r^2}right)right)\
&+sum_{eleq r}frac{(-1)^e}{e}left(frac{pi}{4}+Oleft(frac{e}{r^2}right)right)\
&-left(sum_{dleq r}frac{chi_4(d)}{d}right)
left(sum_{eleq r}frac{(-1)^e}{e}right)\
=&-log 2sum_{dleq r}frac{chi_4(d)}{d}+frac{pi}{4}sum_{eleq r}frac{(-1)^e}{e}+frac{pi}{4}log 2+Oleft(r^{-1}right)\
=&-frac{pi}{4}log 2-frac{pi}{4}log 2+frac{pi}{4}log 2+Oleft(r^{-1}right)\
=&-frac{pi}{4}log 2+Oleft(r^{-1}right).
end{align*}
Therefore, the OP's sum is
$$sum_{kleq r^2}frac{(-1)^kr_2(k)}{k}=-pilog 2+Oleft(r^{-1}right).$$
edited 29 mins ago
answered 1 hour ago
GH from MOGH from MO
58.3k5145221
58.3k5145221
add a comment |
add a comment |
Thanks for contributing an answer to MathOverflow!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathoverflow.net%2fquestions%2f321839%2fdouble-sum-over-lattice-points-in-circle%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
Do you really mean $(m,n)$ on the circle of radius $r$, not inside it? As stated, the absolute value of the sum is at most the number of lattice point on the circle of radius $r$ divided by $r^2$, hence it tends to zero rather quickly.
$endgroup$
– GH from MO
1 hour ago
1
$begingroup$
Summing on $m$ then on $n$ (or the reverse) gives (numerically) $-pilog(2)$. This should be standard.
$endgroup$
– Henri Cohen
1 hour ago
1
$begingroup$
@HenriCohen: Indeed, if $C_r$ denotes the disk of radius $r$ centered at $0$, then the limit equals $-pilog(2)$. I will add the details below soon.
$endgroup$
– GH from MO
1 hour ago