Double Sum over Lattice Points in Circle












3












$begingroup$


A friend posed the following question to me:

Evaluate the the limit, as $r rightarrow infty $, of the sum $displaystyle sum limits_{(m,n) in C_r}$ $displaystyle (-1)^{m+n} over displaystyle m^2 + n^2$ where the $(m,n)$ are the lattice points in the circle radius $r$ centered at 0.

I expect one would need Poisson summation to turn this into an exponential sum and apply some analytic estimate, but I cannot find any relevant results. Any help and especially, references, would be welcome.










share|cite|improve this question











$endgroup$












  • $begingroup$
    Do you really mean $(m,n)$ on the circle of radius $r$, not inside it? As stated, the absolute value of the sum is at most the number of lattice point on the circle of radius $r$ divided by $r^2$, hence it tends to zero rather quickly.
    $endgroup$
    – GH from MO
    1 hour ago








  • 1




    $begingroup$
    Summing on $m$ then on $n$ (or the reverse) gives (numerically) $-pilog(2)$. This should be standard.
    $endgroup$
    – Henri Cohen
    1 hour ago






  • 1




    $begingroup$
    @HenriCohen: Indeed, if $C_r$ denotes the disk of radius $r$ centered at $0$, then the limit equals $-pilog(2)$. I will add the details below soon.
    $endgroup$
    – GH from MO
    1 hour ago
















3












$begingroup$


A friend posed the following question to me:

Evaluate the the limit, as $r rightarrow infty $, of the sum $displaystyle sum limits_{(m,n) in C_r}$ $displaystyle (-1)^{m+n} over displaystyle m^2 + n^2$ where the $(m,n)$ are the lattice points in the circle radius $r$ centered at 0.

I expect one would need Poisson summation to turn this into an exponential sum and apply some analytic estimate, but I cannot find any relevant results. Any help and especially, references, would be welcome.










share|cite|improve this question











$endgroup$












  • $begingroup$
    Do you really mean $(m,n)$ on the circle of radius $r$, not inside it? As stated, the absolute value of the sum is at most the number of lattice point on the circle of radius $r$ divided by $r^2$, hence it tends to zero rather quickly.
    $endgroup$
    – GH from MO
    1 hour ago








  • 1




    $begingroup$
    Summing on $m$ then on $n$ (or the reverse) gives (numerically) $-pilog(2)$. This should be standard.
    $endgroup$
    – Henri Cohen
    1 hour ago






  • 1




    $begingroup$
    @HenriCohen: Indeed, if $C_r$ denotes the disk of radius $r$ centered at $0$, then the limit equals $-pilog(2)$. I will add the details below soon.
    $endgroup$
    – GH from MO
    1 hour ago














3












3








3


1



$begingroup$


A friend posed the following question to me:

Evaluate the the limit, as $r rightarrow infty $, of the sum $displaystyle sum limits_{(m,n) in C_r}$ $displaystyle (-1)^{m+n} over displaystyle m^2 + n^2$ where the $(m,n)$ are the lattice points in the circle radius $r$ centered at 0.

I expect one would need Poisson summation to turn this into an exponential sum and apply some analytic estimate, but I cannot find any relevant results. Any help and especially, references, would be welcome.










share|cite|improve this question











$endgroup$




A friend posed the following question to me:

Evaluate the the limit, as $r rightarrow infty $, of the sum $displaystyle sum limits_{(m,n) in C_r}$ $displaystyle (-1)^{m+n} over displaystyle m^2 + n^2$ where the $(m,n)$ are the lattice points in the circle radius $r$ centered at 0.

I expect one would need Poisson summation to turn this into an exponential sum and apply some analytic estimate, but I cannot find any relevant results. Any help and especially, references, would be welcome.







nt.number-theory analytic-number-theory lattices






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited 1 hour ago









GH from MO

58.3k5145221




58.3k5145221










asked 2 hours ago









Kevin L.Kevin L.

412




412












  • $begingroup$
    Do you really mean $(m,n)$ on the circle of radius $r$, not inside it? As stated, the absolute value of the sum is at most the number of lattice point on the circle of radius $r$ divided by $r^2$, hence it tends to zero rather quickly.
    $endgroup$
    – GH from MO
    1 hour ago








  • 1




    $begingroup$
    Summing on $m$ then on $n$ (or the reverse) gives (numerically) $-pilog(2)$. This should be standard.
    $endgroup$
    – Henri Cohen
    1 hour ago






  • 1




    $begingroup$
    @HenriCohen: Indeed, if $C_r$ denotes the disk of radius $r$ centered at $0$, then the limit equals $-pilog(2)$. I will add the details below soon.
    $endgroup$
    – GH from MO
    1 hour ago


















  • $begingroup$
    Do you really mean $(m,n)$ on the circle of radius $r$, not inside it? As stated, the absolute value of the sum is at most the number of lattice point on the circle of radius $r$ divided by $r^2$, hence it tends to zero rather quickly.
    $endgroup$
    – GH from MO
    1 hour ago








  • 1




    $begingroup$
    Summing on $m$ then on $n$ (or the reverse) gives (numerically) $-pilog(2)$. This should be standard.
    $endgroup$
    – Henri Cohen
    1 hour ago






  • 1




    $begingroup$
    @HenriCohen: Indeed, if $C_r$ denotes the disk of radius $r$ centered at $0$, then the limit equals $-pilog(2)$. I will add the details below soon.
    $endgroup$
    – GH from MO
    1 hour ago
















$begingroup$
Do you really mean $(m,n)$ on the circle of radius $r$, not inside it? As stated, the absolute value of the sum is at most the number of lattice point on the circle of radius $r$ divided by $r^2$, hence it tends to zero rather quickly.
$endgroup$
– GH from MO
1 hour ago






$begingroup$
Do you really mean $(m,n)$ on the circle of radius $r$, not inside it? As stated, the absolute value of the sum is at most the number of lattice point on the circle of radius $r$ divided by $r^2$, hence it tends to zero rather quickly.
$endgroup$
– GH from MO
1 hour ago






1




1




$begingroup$
Summing on $m$ then on $n$ (or the reverse) gives (numerically) $-pilog(2)$. This should be standard.
$endgroup$
– Henri Cohen
1 hour ago




$begingroup$
Summing on $m$ then on $n$ (or the reverse) gives (numerically) $-pilog(2)$. This should be standard.
$endgroup$
– Henri Cohen
1 hour ago




1




1




$begingroup$
@HenriCohen: Indeed, if $C_r$ denotes the disk of radius $r$ centered at $0$, then the limit equals $-pilog(2)$. I will add the details below soon.
$endgroup$
– GH from MO
1 hour ago




$begingroup$
@HenriCohen: Indeed, if $C_r$ denotes the disk of radius $r$ centered at $0$, then the limit equals $-pilog(2)$. I will add the details below soon.
$endgroup$
– GH from MO
1 hour ago










3 Answers
3






active

oldest

votes


















3












$begingroup$

It is problem number 10 of IMC 2018, you may find the solution on the official site.






share|cite|improve this answer









$endgroup$













  • $begingroup$
    Too bad, I am not following these math competitions. I added my own (pretty standard) calculation below.
    $endgroup$
    – GH from MO
    39 mins ago






  • 2




    $begingroup$
    @GHfromMO It is quite interesting (for me) that all the number theory used for example in your solution may be replaced by applying the linear change of variables. By the way, another standard way to calculate this sum compared to the genuine answer gives the nice, of course known, formula $2^{1/4}e^{-pi/24}=(1+e^{-pi})(1+e^{-3pi})(1+e^{-5pi})dots$.
    $endgroup$
    – Fedor Petrov
    28 mins ago










  • $begingroup$
    Yes, I was also surprised by the elementary nature of the official solution. Of course I like my solution better :-)
    $endgroup$
    – GH from MO
    5 mins ago



















0












$begingroup$

Assuming convergence, here goes:



let $r_2(k)$ denote the number of ways a number $kinmathbb{N}$ can be written
as the sum of squares of two integers. Then, we compute
$$sum_{(0,0)neq(m,n)inmathbb{Z}^2}frac{(-1)^{m+n}}{m^2+n^2}=sum_{k=1}^{infty}(-1)^kfrac{r_2(k)}k.$$
It is known that
$$r_2(k)=4sum_{dvert k}left(frac{-4}kright)=4left(1*left(frac{-4}kright)right)(k)$$
where $left(frac{a}bright)$ is the Jacobi symbol. Using $left(frac{-4}{2k}right)=0$ and $left(frac{-4}{2k+1}right)=(-1)^k$ it follows that
begin{align} sum_{k=1}^{infty}(-1)^kfrac{r_2(k)}k
&=4sum_{k=1}^{infty}(-1)^kfrac{(1*left(frac{-4}kright)(k)}k \
&=4sum_{n=1}^{infty}frac{(-1)^n}nsum_{k=1}^{infty}(-1)^kfrac{left(frac{-4}kright)(k)}k \
&=4sum_{n=1}^{infty}frac{(-1)^n}nsum_{m=0}^{infty}frac{(-1)^m}{2m+1} \
&=4(-log(2))left(frac{pi}4right) \
&=-pi,log(2),
end{align}

which confrims Henri Cohen's guesstimate.






share|cite|improve this answer









$endgroup$





















    0












    $begingroup$

    I think the OP meant that $C_r$ is the disk ${(x,y)inmathbb{R}^2:x^2+y^2leq r^2}$. If this is the case, then the limit equals $-pilog(2)$, in accordance with Henri Cohen's remark above.



    For the proof we combine the formula
    $$r_2(k):=#{(m,n)inmathbb{Z}^2:m^2+n^2=k}=4sum_{dmid k}chi_4(d)$$
    with Dirichlet's hyperbola method. Here, $chi_4$ denotes the nontrivial Dirichlet character modulo $4$. With this notation and the above interpretation for $C_r$, the OP's sum equals
    $$sum_{kleq r^2}frac{(-1)^kr_2(k)}{k}=4sum_{deleq r^2}frac{(-1)^{e}chi_4(d)}{de}.$$
    We shall now use the well-known facts that
    $$sum_{d=1}^inftyfrac{chi_4(d)}{d}=frac{pi}{4}
    qquadtext{and}qquad
    sum_{e=1}^inftyfrac{(-1)^e}{e}=-log 2,$$

    where both series are alternating. Using this observation,
    begin{align*}
    sum_{deleq r^2}frac{(-1)^{e}chi_4(d)}{de}
    =&sum_{substack{dleq r\eleq r^2/d}}frac{(-1)^{e}chi_4(d)}{de}
    +sum_{substack{eleq r\dleq r^2/e}}frac{(-1)^{e}chi_4(d)}{de}-
    sum_{d,eleq r}frac{(-1)^{e}chi_4(d)}{de}\
    =&sum_{dleq r}frac{chi_4(d)}{d}left(-log 2+Oleft(frac{d}{r^2}right)right)\
    &+sum_{eleq r}frac{(-1)^e}{e}left(frac{pi}{4}+Oleft(frac{e}{r^2}right)right)\
    &-left(sum_{dleq r}frac{chi_4(d)}{d}right)
    left(sum_{eleq r}frac{(-1)^e}{e}right)\
    =&-log 2sum_{dleq r}frac{chi_4(d)}{d}+frac{pi}{4}sum_{eleq r}frac{(-1)^e}{e}+frac{pi}{4}log 2+Oleft(r^{-1}right)\
    =&-frac{pi}{4}log 2-frac{pi}{4}log 2+frac{pi}{4}log 2+Oleft(r^{-1}right)\
    =&-frac{pi}{4}log 2+Oleft(r^{-1}right).
    end{align*}

    Therefore, the OP's sum is
    $$sum_{kleq r^2}frac{(-1)^kr_2(k)}{k}=-pilog 2+Oleft(r^{-1}right).$$






    share|cite|improve this answer











    $endgroup$













      Your Answer





      StackExchange.ifUsing("editor", function () {
      return StackExchange.using("mathjaxEditing", function () {
      StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
      StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
      });
      });
      }, "mathjax-editing");

      StackExchange.ready(function() {
      var channelOptions = {
      tags: "".split(" "),
      id: "504"
      };
      initTagRenderer("".split(" "), "".split(" "), channelOptions);

      StackExchange.using("externalEditor", function() {
      // Have to fire editor after snippets, if snippets enabled
      if (StackExchange.settings.snippets.snippetsEnabled) {
      StackExchange.using("snippets", function() {
      createEditor();
      });
      }
      else {
      createEditor();
      }
      });

      function createEditor() {
      StackExchange.prepareEditor({
      heartbeatType: 'answer',
      autoActivateHeartbeat: false,
      convertImagesToLinks: true,
      noModals: true,
      showLowRepImageUploadWarning: true,
      reputationToPostImages: 10,
      bindNavPrevention: true,
      postfix: "",
      imageUploader: {
      brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
      contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
      allowUrls: true
      },
      noCode: true, onDemand: true,
      discardSelector: ".discard-answer"
      ,immediatelyShowMarkdownHelp:true
      });


      }
      });














      draft saved

      draft discarded


















      StackExchange.ready(
      function () {
      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathoverflow.net%2fquestions%2f321839%2fdouble-sum-over-lattice-points-in-circle%23new-answer', 'question_page');
      }
      );

      Post as a guest















      Required, but never shown

























      3 Answers
      3






      active

      oldest

      votes








      3 Answers
      3






      active

      oldest

      votes









      active

      oldest

      votes






      active

      oldest

      votes









      3












      $begingroup$

      It is problem number 10 of IMC 2018, you may find the solution on the official site.






      share|cite|improve this answer









      $endgroup$













      • $begingroup$
        Too bad, I am not following these math competitions. I added my own (pretty standard) calculation below.
        $endgroup$
        – GH from MO
        39 mins ago






      • 2




        $begingroup$
        @GHfromMO It is quite interesting (for me) that all the number theory used for example in your solution may be replaced by applying the linear change of variables. By the way, another standard way to calculate this sum compared to the genuine answer gives the nice, of course known, formula $2^{1/4}e^{-pi/24}=(1+e^{-pi})(1+e^{-3pi})(1+e^{-5pi})dots$.
        $endgroup$
        – Fedor Petrov
        28 mins ago










      • $begingroup$
        Yes, I was also surprised by the elementary nature of the official solution. Of course I like my solution better :-)
        $endgroup$
        – GH from MO
        5 mins ago
















      3












      $begingroup$

      It is problem number 10 of IMC 2018, you may find the solution on the official site.






      share|cite|improve this answer









      $endgroup$













      • $begingroup$
        Too bad, I am not following these math competitions. I added my own (pretty standard) calculation below.
        $endgroup$
        – GH from MO
        39 mins ago






      • 2




        $begingroup$
        @GHfromMO It is quite interesting (for me) that all the number theory used for example in your solution may be replaced by applying the linear change of variables. By the way, another standard way to calculate this sum compared to the genuine answer gives the nice, of course known, formula $2^{1/4}e^{-pi/24}=(1+e^{-pi})(1+e^{-3pi})(1+e^{-5pi})dots$.
        $endgroup$
        – Fedor Petrov
        28 mins ago










      • $begingroup$
        Yes, I was also surprised by the elementary nature of the official solution. Of course I like my solution better :-)
        $endgroup$
        – GH from MO
        5 mins ago














      3












      3








      3





      $begingroup$

      It is problem number 10 of IMC 2018, you may find the solution on the official site.






      share|cite|improve this answer









      $endgroup$



      It is problem number 10 of IMC 2018, you may find the solution on the official site.







      share|cite|improve this answer












      share|cite|improve this answer



      share|cite|improve this answer










      answered 50 mins ago









      Fedor PetrovFedor Petrov

      48.5k5112225




      48.5k5112225












      • $begingroup$
        Too bad, I am not following these math competitions. I added my own (pretty standard) calculation below.
        $endgroup$
        – GH from MO
        39 mins ago






      • 2




        $begingroup$
        @GHfromMO It is quite interesting (for me) that all the number theory used for example in your solution may be replaced by applying the linear change of variables. By the way, another standard way to calculate this sum compared to the genuine answer gives the nice, of course known, formula $2^{1/4}e^{-pi/24}=(1+e^{-pi})(1+e^{-3pi})(1+e^{-5pi})dots$.
        $endgroup$
        – Fedor Petrov
        28 mins ago










      • $begingroup$
        Yes, I was also surprised by the elementary nature of the official solution. Of course I like my solution better :-)
        $endgroup$
        – GH from MO
        5 mins ago


















      • $begingroup$
        Too bad, I am not following these math competitions. I added my own (pretty standard) calculation below.
        $endgroup$
        – GH from MO
        39 mins ago






      • 2




        $begingroup$
        @GHfromMO It is quite interesting (for me) that all the number theory used for example in your solution may be replaced by applying the linear change of variables. By the way, another standard way to calculate this sum compared to the genuine answer gives the nice, of course known, formula $2^{1/4}e^{-pi/24}=(1+e^{-pi})(1+e^{-3pi})(1+e^{-5pi})dots$.
        $endgroup$
        – Fedor Petrov
        28 mins ago










      • $begingroup$
        Yes, I was also surprised by the elementary nature of the official solution. Of course I like my solution better :-)
        $endgroup$
        – GH from MO
        5 mins ago
















      $begingroup$
      Too bad, I am not following these math competitions. I added my own (pretty standard) calculation below.
      $endgroup$
      – GH from MO
      39 mins ago




      $begingroup$
      Too bad, I am not following these math competitions. I added my own (pretty standard) calculation below.
      $endgroup$
      – GH from MO
      39 mins ago




      2




      2




      $begingroup$
      @GHfromMO It is quite interesting (for me) that all the number theory used for example in your solution may be replaced by applying the linear change of variables. By the way, another standard way to calculate this sum compared to the genuine answer gives the nice, of course known, formula $2^{1/4}e^{-pi/24}=(1+e^{-pi})(1+e^{-3pi})(1+e^{-5pi})dots$.
      $endgroup$
      – Fedor Petrov
      28 mins ago




      $begingroup$
      @GHfromMO It is quite interesting (for me) that all the number theory used for example in your solution may be replaced by applying the linear change of variables. By the way, another standard way to calculate this sum compared to the genuine answer gives the nice, of course known, formula $2^{1/4}e^{-pi/24}=(1+e^{-pi})(1+e^{-3pi})(1+e^{-5pi})dots$.
      $endgroup$
      – Fedor Petrov
      28 mins ago












      $begingroup$
      Yes, I was also surprised by the elementary nature of the official solution. Of course I like my solution better :-)
      $endgroup$
      – GH from MO
      5 mins ago




      $begingroup$
      Yes, I was also surprised by the elementary nature of the official solution. Of course I like my solution better :-)
      $endgroup$
      – GH from MO
      5 mins ago











      0












      $begingroup$

      Assuming convergence, here goes:



      let $r_2(k)$ denote the number of ways a number $kinmathbb{N}$ can be written
      as the sum of squares of two integers. Then, we compute
      $$sum_{(0,0)neq(m,n)inmathbb{Z}^2}frac{(-1)^{m+n}}{m^2+n^2}=sum_{k=1}^{infty}(-1)^kfrac{r_2(k)}k.$$
      It is known that
      $$r_2(k)=4sum_{dvert k}left(frac{-4}kright)=4left(1*left(frac{-4}kright)right)(k)$$
      where $left(frac{a}bright)$ is the Jacobi symbol. Using $left(frac{-4}{2k}right)=0$ and $left(frac{-4}{2k+1}right)=(-1)^k$ it follows that
      begin{align} sum_{k=1}^{infty}(-1)^kfrac{r_2(k)}k
      &=4sum_{k=1}^{infty}(-1)^kfrac{(1*left(frac{-4}kright)(k)}k \
      &=4sum_{n=1}^{infty}frac{(-1)^n}nsum_{k=1}^{infty}(-1)^kfrac{left(frac{-4}kright)(k)}k \
      &=4sum_{n=1}^{infty}frac{(-1)^n}nsum_{m=0}^{infty}frac{(-1)^m}{2m+1} \
      &=4(-log(2))left(frac{pi}4right) \
      &=-pi,log(2),
      end{align}

      which confrims Henri Cohen's guesstimate.






      share|cite|improve this answer









      $endgroup$


















        0












        $begingroup$

        Assuming convergence, here goes:



        let $r_2(k)$ denote the number of ways a number $kinmathbb{N}$ can be written
        as the sum of squares of two integers. Then, we compute
        $$sum_{(0,0)neq(m,n)inmathbb{Z}^2}frac{(-1)^{m+n}}{m^2+n^2}=sum_{k=1}^{infty}(-1)^kfrac{r_2(k)}k.$$
        It is known that
        $$r_2(k)=4sum_{dvert k}left(frac{-4}kright)=4left(1*left(frac{-4}kright)right)(k)$$
        where $left(frac{a}bright)$ is the Jacobi symbol. Using $left(frac{-4}{2k}right)=0$ and $left(frac{-4}{2k+1}right)=(-1)^k$ it follows that
        begin{align} sum_{k=1}^{infty}(-1)^kfrac{r_2(k)}k
        &=4sum_{k=1}^{infty}(-1)^kfrac{(1*left(frac{-4}kright)(k)}k \
        &=4sum_{n=1}^{infty}frac{(-1)^n}nsum_{k=1}^{infty}(-1)^kfrac{left(frac{-4}kright)(k)}k \
        &=4sum_{n=1}^{infty}frac{(-1)^n}nsum_{m=0}^{infty}frac{(-1)^m}{2m+1} \
        &=4(-log(2))left(frac{pi}4right) \
        &=-pi,log(2),
        end{align}

        which confrims Henri Cohen's guesstimate.






        share|cite|improve this answer









        $endgroup$
















          0












          0








          0





          $begingroup$

          Assuming convergence, here goes:



          let $r_2(k)$ denote the number of ways a number $kinmathbb{N}$ can be written
          as the sum of squares of two integers. Then, we compute
          $$sum_{(0,0)neq(m,n)inmathbb{Z}^2}frac{(-1)^{m+n}}{m^2+n^2}=sum_{k=1}^{infty}(-1)^kfrac{r_2(k)}k.$$
          It is known that
          $$r_2(k)=4sum_{dvert k}left(frac{-4}kright)=4left(1*left(frac{-4}kright)right)(k)$$
          where $left(frac{a}bright)$ is the Jacobi symbol. Using $left(frac{-4}{2k}right)=0$ and $left(frac{-4}{2k+1}right)=(-1)^k$ it follows that
          begin{align} sum_{k=1}^{infty}(-1)^kfrac{r_2(k)}k
          &=4sum_{k=1}^{infty}(-1)^kfrac{(1*left(frac{-4}kright)(k)}k \
          &=4sum_{n=1}^{infty}frac{(-1)^n}nsum_{k=1}^{infty}(-1)^kfrac{left(frac{-4}kright)(k)}k \
          &=4sum_{n=1}^{infty}frac{(-1)^n}nsum_{m=0}^{infty}frac{(-1)^m}{2m+1} \
          &=4(-log(2))left(frac{pi}4right) \
          &=-pi,log(2),
          end{align}

          which confrims Henri Cohen's guesstimate.






          share|cite|improve this answer









          $endgroup$



          Assuming convergence, here goes:



          let $r_2(k)$ denote the number of ways a number $kinmathbb{N}$ can be written
          as the sum of squares of two integers. Then, we compute
          $$sum_{(0,0)neq(m,n)inmathbb{Z}^2}frac{(-1)^{m+n}}{m^2+n^2}=sum_{k=1}^{infty}(-1)^kfrac{r_2(k)}k.$$
          It is known that
          $$r_2(k)=4sum_{dvert k}left(frac{-4}kright)=4left(1*left(frac{-4}kright)right)(k)$$
          where $left(frac{a}bright)$ is the Jacobi symbol. Using $left(frac{-4}{2k}right)=0$ and $left(frac{-4}{2k+1}right)=(-1)^k$ it follows that
          begin{align} sum_{k=1}^{infty}(-1)^kfrac{r_2(k)}k
          &=4sum_{k=1}^{infty}(-1)^kfrac{(1*left(frac{-4}kright)(k)}k \
          &=4sum_{n=1}^{infty}frac{(-1)^n}nsum_{k=1}^{infty}(-1)^kfrac{left(frac{-4}kright)(k)}k \
          &=4sum_{n=1}^{infty}frac{(-1)^n}nsum_{m=0}^{infty}frac{(-1)^m}{2m+1} \
          &=4(-log(2))left(frac{pi}4right) \
          &=-pi,log(2),
          end{align}

          which confrims Henri Cohen's guesstimate.







          share|cite|improve this answer












          share|cite|improve this answer



          share|cite|improve this answer










          answered 47 mins ago









          T. AmdeberhanT. Amdeberhan

          17.2k229127




          17.2k229127























              0












              $begingroup$

              I think the OP meant that $C_r$ is the disk ${(x,y)inmathbb{R}^2:x^2+y^2leq r^2}$. If this is the case, then the limit equals $-pilog(2)$, in accordance with Henri Cohen's remark above.



              For the proof we combine the formula
              $$r_2(k):=#{(m,n)inmathbb{Z}^2:m^2+n^2=k}=4sum_{dmid k}chi_4(d)$$
              with Dirichlet's hyperbola method. Here, $chi_4$ denotes the nontrivial Dirichlet character modulo $4$. With this notation and the above interpretation for $C_r$, the OP's sum equals
              $$sum_{kleq r^2}frac{(-1)^kr_2(k)}{k}=4sum_{deleq r^2}frac{(-1)^{e}chi_4(d)}{de}.$$
              We shall now use the well-known facts that
              $$sum_{d=1}^inftyfrac{chi_4(d)}{d}=frac{pi}{4}
              qquadtext{and}qquad
              sum_{e=1}^inftyfrac{(-1)^e}{e}=-log 2,$$

              where both series are alternating. Using this observation,
              begin{align*}
              sum_{deleq r^2}frac{(-1)^{e}chi_4(d)}{de}
              =&sum_{substack{dleq r\eleq r^2/d}}frac{(-1)^{e}chi_4(d)}{de}
              +sum_{substack{eleq r\dleq r^2/e}}frac{(-1)^{e}chi_4(d)}{de}-
              sum_{d,eleq r}frac{(-1)^{e}chi_4(d)}{de}\
              =&sum_{dleq r}frac{chi_4(d)}{d}left(-log 2+Oleft(frac{d}{r^2}right)right)\
              &+sum_{eleq r}frac{(-1)^e}{e}left(frac{pi}{4}+Oleft(frac{e}{r^2}right)right)\
              &-left(sum_{dleq r}frac{chi_4(d)}{d}right)
              left(sum_{eleq r}frac{(-1)^e}{e}right)\
              =&-log 2sum_{dleq r}frac{chi_4(d)}{d}+frac{pi}{4}sum_{eleq r}frac{(-1)^e}{e}+frac{pi}{4}log 2+Oleft(r^{-1}right)\
              =&-frac{pi}{4}log 2-frac{pi}{4}log 2+frac{pi}{4}log 2+Oleft(r^{-1}right)\
              =&-frac{pi}{4}log 2+Oleft(r^{-1}right).
              end{align*}

              Therefore, the OP's sum is
              $$sum_{kleq r^2}frac{(-1)^kr_2(k)}{k}=-pilog 2+Oleft(r^{-1}right).$$






              share|cite|improve this answer











              $endgroup$


















                0












                $begingroup$

                I think the OP meant that $C_r$ is the disk ${(x,y)inmathbb{R}^2:x^2+y^2leq r^2}$. If this is the case, then the limit equals $-pilog(2)$, in accordance with Henri Cohen's remark above.



                For the proof we combine the formula
                $$r_2(k):=#{(m,n)inmathbb{Z}^2:m^2+n^2=k}=4sum_{dmid k}chi_4(d)$$
                with Dirichlet's hyperbola method. Here, $chi_4$ denotes the nontrivial Dirichlet character modulo $4$. With this notation and the above interpretation for $C_r$, the OP's sum equals
                $$sum_{kleq r^2}frac{(-1)^kr_2(k)}{k}=4sum_{deleq r^2}frac{(-1)^{e}chi_4(d)}{de}.$$
                We shall now use the well-known facts that
                $$sum_{d=1}^inftyfrac{chi_4(d)}{d}=frac{pi}{4}
                qquadtext{and}qquad
                sum_{e=1}^inftyfrac{(-1)^e}{e}=-log 2,$$

                where both series are alternating. Using this observation,
                begin{align*}
                sum_{deleq r^2}frac{(-1)^{e}chi_4(d)}{de}
                =&sum_{substack{dleq r\eleq r^2/d}}frac{(-1)^{e}chi_4(d)}{de}
                +sum_{substack{eleq r\dleq r^2/e}}frac{(-1)^{e}chi_4(d)}{de}-
                sum_{d,eleq r}frac{(-1)^{e}chi_4(d)}{de}\
                =&sum_{dleq r}frac{chi_4(d)}{d}left(-log 2+Oleft(frac{d}{r^2}right)right)\
                &+sum_{eleq r}frac{(-1)^e}{e}left(frac{pi}{4}+Oleft(frac{e}{r^2}right)right)\
                &-left(sum_{dleq r}frac{chi_4(d)}{d}right)
                left(sum_{eleq r}frac{(-1)^e}{e}right)\
                =&-log 2sum_{dleq r}frac{chi_4(d)}{d}+frac{pi}{4}sum_{eleq r}frac{(-1)^e}{e}+frac{pi}{4}log 2+Oleft(r^{-1}right)\
                =&-frac{pi}{4}log 2-frac{pi}{4}log 2+frac{pi}{4}log 2+Oleft(r^{-1}right)\
                =&-frac{pi}{4}log 2+Oleft(r^{-1}right).
                end{align*}

                Therefore, the OP's sum is
                $$sum_{kleq r^2}frac{(-1)^kr_2(k)}{k}=-pilog 2+Oleft(r^{-1}right).$$






                share|cite|improve this answer











                $endgroup$
















                  0












                  0








                  0





                  $begingroup$

                  I think the OP meant that $C_r$ is the disk ${(x,y)inmathbb{R}^2:x^2+y^2leq r^2}$. If this is the case, then the limit equals $-pilog(2)$, in accordance with Henri Cohen's remark above.



                  For the proof we combine the formula
                  $$r_2(k):=#{(m,n)inmathbb{Z}^2:m^2+n^2=k}=4sum_{dmid k}chi_4(d)$$
                  with Dirichlet's hyperbola method. Here, $chi_4$ denotes the nontrivial Dirichlet character modulo $4$. With this notation and the above interpretation for $C_r$, the OP's sum equals
                  $$sum_{kleq r^2}frac{(-1)^kr_2(k)}{k}=4sum_{deleq r^2}frac{(-1)^{e}chi_4(d)}{de}.$$
                  We shall now use the well-known facts that
                  $$sum_{d=1}^inftyfrac{chi_4(d)}{d}=frac{pi}{4}
                  qquadtext{and}qquad
                  sum_{e=1}^inftyfrac{(-1)^e}{e}=-log 2,$$

                  where both series are alternating. Using this observation,
                  begin{align*}
                  sum_{deleq r^2}frac{(-1)^{e}chi_4(d)}{de}
                  =&sum_{substack{dleq r\eleq r^2/d}}frac{(-1)^{e}chi_4(d)}{de}
                  +sum_{substack{eleq r\dleq r^2/e}}frac{(-1)^{e}chi_4(d)}{de}-
                  sum_{d,eleq r}frac{(-1)^{e}chi_4(d)}{de}\
                  =&sum_{dleq r}frac{chi_4(d)}{d}left(-log 2+Oleft(frac{d}{r^2}right)right)\
                  &+sum_{eleq r}frac{(-1)^e}{e}left(frac{pi}{4}+Oleft(frac{e}{r^2}right)right)\
                  &-left(sum_{dleq r}frac{chi_4(d)}{d}right)
                  left(sum_{eleq r}frac{(-1)^e}{e}right)\
                  =&-log 2sum_{dleq r}frac{chi_4(d)}{d}+frac{pi}{4}sum_{eleq r}frac{(-1)^e}{e}+frac{pi}{4}log 2+Oleft(r^{-1}right)\
                  =&-frac{pi}{4}log 2-frac{pi}{4}log 2+frac{pi}{4}log 2+Oleft(r^{-1}right)\
                  =&-frac{pi}{4}log 2+Oleft(r^{-1}right).
                  end{align*}

                  Therefore, the OP's sum is
                  $$sum_{kleq r^2}frac{(-1)^kr_2(k)}{k}=-pilog 2+Oleft(r^{-1}right).$$






                  share|cite|improve this answer











                  $endgroup$



                  I think the OP meant that $C_r$ is the disk ${(x,y)inmathbb{R}^2:x^2+y^2leq r^2}$. If this is the case, then the limit equals $-pilog(2)$, in accordance with Henri Cohen's remark above.



                  For the proof we combine the formula
                  $$r_2(k):=#{(m,n)inmathbb{Z}^2:m^2+n^2=k}=4sum_{dmid k}chi_4(d)$$
                  with Dirichlet's hyperbola method. Here, $chi_4$ denotes the nontrivial Dirichlet character modulo $4$. With this notation and the above interpretation for $C_r$, the OP's sum equals
                  $$sum_{kleq r^2}frac{(-1)^kr_2(k)}{k}=4sum_{deleq r^2}frac{(-1)^{e}chi_4(d)}{de}.$$
                  We shall now use the well-known facts that
                  $$sum_{d=1}^inftyfrac{chi_4(d)}{d}=frac{pi}{4}
                  qquadtext{and}qquad
                  sum_{e=1}^inftyfrac{(-1)^e}{e}=-log 2,$$

                  where both series are alternating. Using this observation,
                  begin{align*}
                  sum_{deleq r^2}frac{(-1)^{e}chi_4(d)}{de}
                  =&sum_{substack{dleq r\eleq r^2/d}}frac{(-1)^{e}chi_4(d)}{de}
                  +sum_{substack{eleq r\dleq r^2/e}}frac{(-1)^{e}chi_4(d)}{de}-
                  sum_{d,eleq r}frac{(-1)^{e}chi_4(d)}{de}\
                  =&sum_{dleq r}frac{chi_4(d)}{d}left(-log 2+Oleft(frac{d}{r^2}right)right)\
                  &+sum_{eleq r}frac{(-1)^e}{e}left(frac{pi}{4}+Oleft(frac{e}{r^2}right)right)\
                  &-left(sum_{dleq r}frac{chi_4(d)}{d}right)
                  left(sum_{eleq r}frac{(-1)^e}{e}right)\
                  =&-log 2sum_{dleq r}frac{chi_4(d)}{d}+frac{pi}{4}sum_{eleq r}frac{(-1)^e}{e}+frac{pi}{4}log 2+Oleft(r^{-1}right)\
                  =&-frac{pi}{4}log 2-frac{pi}{4}log 2+frac{pi}{4}log 2+Oleft(r^{-1}right)\
                  =&-frac{pi}{4}log 2+Oleft(r^{-1}right).
                  end{align*}

                  Therefore, the OP's sum is
                  $$sum_{kleq r^2}frac{(-1)^kr_2(k)}{k}=-pilog 2+Oleft(r^{-1}right).$$







                  share|cite|improve this answer














                  share|cite|improve this answer



                  share|cite|improve this answer








                  edited 29 mins ago

























                  answered 1 hour ago









                  GH from MOGH from MO

                  58.3k5145221




                  58.3k5145221






























                      draft saved

                      draft discarded




















































                      Thanks for contributing an answer to MathOverflow!


                      • Please be sure to answer the question. Provide details and share your research!

                      But avoid



                      • Asking for help, clarification, or responding to other answers.

                      • Making statements based on opinion; back them up with references or personal experience.


                      Use MathJax to format equations. MathJax reference.


                      To learn more, see our tips on writing great answers.




                      draft saved


                      draft discarded














                      StackExchange.ready(
                      function () {
                      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathoverflow.net%2fquestions%2f321839%2fdouble-sum-over-lattice-points-in-circle%23new-answer', 'question_page');
                      }
                      );

                      Post as a guest















                      Required, but never shown





















































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown

































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown







                      Popular posts from this blog

                      Olav Thon

                      Waikiki

                      Tårekanal