How to substitute values from a list into a function?
$begingroup$
I was hoping to take pairs of numbers from a list and substitute them into a function. So if my list was
list = {{1,2}, {3,4}, {5,6}}
and my function was
function = a x^b
The output I'm hoping to get is
result =1x^2 + 3x^4 + 5x^6
How would I best do this?
list-manipulation functions
New contributor
$endgroup$
add a comment |
$begingroup$
I was hoping to take pairs of numbers from a list and substitute them into a function. So if my list was
list = {{1,2}, {3,4}, {5,6}}
and my function was
function = a x^b
The output I'm hoping to get is
result =1x^2 + 3x^4 + 5x^6
How would I best do this?
list-manipulation functions
New contributor
$endgroup$
$begingroup$
#1 x^#2 & @@@ {{1, 2}, {3, 4}, {5, 6}} // Total
$endgroup$
– Okkes Dulgerci
20 mins ago
add a comment |
$begingroup$
I was hoping to take pairs of numbers from a list and substitute them into a function. So if my list was
list = {{1,2}, {3,4}, {5,6}}
and my function was
function = a x^b
The output I'm hoping to get is
result =1x^2 + 3x^4 + 5x^6
How would I best do this?
list-manipulation functions
New contributor
$endgroup$
I was hoping to take pairs of numbers from a list and substitute them into a function. So if my list was
list = {{1,2}, {3,4}, {5,6}}
and my function was
function = a x^b
The output I'm hoping to get is
result =1x^2 + 3x^4 + 5x^6
How would I best do this?
list-manipulation functions
list-manipulation functions
New contributor
New contributor
New contributor
asked 1 hour ago
PineapplePineapple
161
161
New contributor
New contributor
$begingroup$
#1 x^#2 & @@@ {{1, 2}, {3, 4}, {5, 6}} // Total
$endgroup$
– Okkes Dulgerci
20 mins ago
add a comment |
$begingroup$
#1 x^#2 & @@@ {{1, 2}, {3, 4}, {5, 6}} // Total
$endgroup$
– Okkes Dulgerci
20 mins ago
$begingroup$
#1 x^#2 & @@@ {{1, 2}, {3, 4}, {5, 6}} // Total
$endgroup$
– Okkes Dulgerci
20 mins ago
$begingroup$
#1 x^#2 & @@@ {{1, 2}, {3, 4}, {5, 6}} // Total
$endgroup$
– Okkes Dulgerci
20 mins ago
add a comment |
6 Answers
6
active
oldest
votes
$begingroup$
This is not a Function
:
function = a x^b
But this is:
function = {a,b} [Function] a x^b
You can Apply
it to each element of
list = {{1,2}, {3,4}, {5,6}}
with
function @@@ list
{x^3, 3 x^5, 5 x^7}
and sum it up with Total
:
Total[ function @@@ list ]
x^3 + 3 x^5 + 5 x^7
$endgroup$
$begingroup$
Why would you do 'function = {a,b} [Function] a x^b' instead of function[a_, b_, x_] = a*x^b?
$endgroup$
– Pineapple
1 hour ago
$begingroup$
Because[Function]
is easily entered with the escape sequence esc f n esc . AlsoFunction
defines a pure function whilefunction[a_, b_, x_] = a*x^b
defines a replacement rule. However, they act the same way - most of the time. So it is a matter of taste.
$endgroup$
– Henrik Schumacher
1 hour ago
$begingroup$
@Pineapple Take a look at this tutorial on Defining Functions. Another good resource is the tutorial on Immediate and Delayed Definitions for the difference betweenSet
(=
) andSetDelayed
(:=
).
$endgroup$
– MarcoB
1 hour ago
add a comment |
$begingroup$
Total[#*x^#2&@@@list]
x^2 + 3 x^4 + 5 x^6
$endgroup$
add a comment |
$begingroup$
Total[(#[[1]] x^#[[2]]) & /@ list]
$endgroup$
$begingroup$
Amazing, thank you! Sorry - I'm very new to Mathematica.
$endgroup$
– Pineapple
1 hour ago
add a comment |
$begingroup$
Another way, perhaps easier on the eyes. Use a pattern to deconstruct the pairs in a function definition.
term[{a_, b_}] := a x^b
Then, Map
it to the list.
Total[term /@ list]
(* x^2 + 3 x^4 + 5 x^6 *)
$endgroup$
add a comment |
$begingroup$
Inner[#1 x^#2 &, Sequence @@ Transpose@list, Plus]
x^2 + 3 x^4 + 5 x^6
One could expand this a bit to allow for different variables:
Clear[f]
f[coefflist_][var_] := Inner[#1 var^#2 &, Sequence @@ Transpose@coefflist, Plus]
so that
f[list][x]
x^2 + 3 x^4 + 5 x^6
but then:
f[list][t]
t^2 + 3 t^4 + 5 t^6
$endgroup$
add a comment |
$begingroup$
ClearAll[fa, fb]
fa = FromCoefficientRules[Thread[#[[All, 2;;]] -> #[[All, 1]]], #2] &;
fb = Internal`FromCoefficientList[Normal@SparseArray[1 + #[[All, 2;;]]->#[[All, 1]]], #2] &;
Examples:
list1 = {{1, 2}, {3, 4}, {5, 6}};
{fa[list1, x], fb[list1, x]}
{x^2 + 3 x^4 + 5 x^6, x^2 + 3 x^4 + 5 x^6}
list2 = {{1, 3, 0}, {3, 2, 1}, {3, 1, 2}, {1, 0, 3}};
{fa[list2, {x, y}], fb[list2, {x, y}]}
{x^3 + 3 x^2 y + 3 x y^2 + y^3, x^3 + 3 x^2 y + 3 x y^2 + y^3}
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "387"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: false,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: null,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Pineapple is a new contributor. Be nice, and check out our Code of Conduct.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathematica.stackexchange.com%2fquestions%2f192691%2fhow-to-substitute-values-from-a-list-into-a-function%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
6 Answers
6
active
oldest
votes
6 Answers
6
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
This is not a Function
:
function = a x^b
But this is:
function = {a,b} [Function] a x^b
You can Apply
it to each element of
list = {{1,2}, {3,4}, {5,6}}
with
function @@@ list
{x^3, 3 x^5, 5 x^7}
and sum it up with Total
:
Total[ function @@@ list ]
x^3 + 3 x^5 + 5 x^7
$endgroup$
$begingroup$
Why would you do 'function = {a,b} [Function] a x^b' instead of function[a_, b_, x_] = a*x^b?
$endgroup$
– Pineapple
1 hour ago
$begingroup$
Because[Function]
is easily entered with the escape sequence esc f n esc . AlsoFunction
defines a pure function whilefunction[a_, b_, x_] = a*x^b
defines a replacement rule. However, they act the same way - most of the time. So it is a matter of taste.
$endgroup$
– Henrik Schumacher
1 hour ago
$begingroup$
@Pineapple Take a look at this tutorial on Defining Functions. Another good resource is the tutorial on Immediate and Delayed Definitions for the difference betweenSet
(=
) andSetDelayed
(:=
).
$endgroup$
– MarcoB
1 hour ago
add a comment |
$begingroup$
This is not a Function
:
function = a x^b
But this is:
function = {a,b} [Function] a x^b
You can Apply
it to each element of
list = {{1,2}, {3,4}, {5,6}}
with
function @@@ list
{x^3, 3 x^5, 5 x^7}
and sum it up with Total
:
Total[ function @@@ list ]
x^3 + 3 x^5 + 5 x^7
$endgroup$
$begingroup$
Why would you do 'function = {a,b} [Function] a x^b' instead of function[a_, b_, x_] = a*x^b?
$endgroup$
– Pineapple
1 hour ago
$begingroup$
Because[Function]
is easily entered with the escape sequence esc f n esc . AlsoFunction
defines a pure function whilefunction[a_, b_, x_] = a*x^b
defines a replacement rule. However, they act the same way - most of the time. So it is a matter of taste.
$endgroup$
– Henrik Schumacher
1 hour ago
$begingroup$
@Pineapple Take a look at this tutorial on Defining Functions. Another good resource is the tutorial on Immediate and Delayed Definitions for the difference betweenSet
(=
) andSetDelayed
(:=
).
$endgroup$
– MarcoB
1 hour ago
add a comment |
$begingroup$
This is not a Function
:
function = a x^b
But this is:
function = {a,b} [Function] a x^b
You can Apply
it to each element of
list = {{1,2}, {3,4}, {5,6}}
with
function @@@ list
{x^3, 3 x^5, 5 x^7}
and sum it up with Total
:
Total[ function @@@ list ]
x^3 + 3 x^5 + 5 x^7
$endgroup$
This is not a Function
:
function = a x^b
But this is:
function = {a,b} [Function] a x^b
You can Apply
it to each element of
list = {{1,2}, {3,4}, {5,6}}
with
function @@@ list
{x^3, 3 x^5, 5 x^7}
and sum it up with Total
:
Total[ function @@@ list ]
x^3 + 3 x^5 + 5 x^7
answered 1 hour ago
Henrik SchumacherHenrik Schumacher
55.4k576154
55.4k576154
$begingroup$
Why would you do 'function = {a,b} [Function] a x^b' instead of function[a_, b_, x_] = a*x^b?
$endgroup$
– Pineapple
1 hour ago
$begingroup$
Because[Function]
is easily entered with the escape sequence esc f n esc . AlsoFunction
defines a pure function whilefunction[a_, b_, x_] = a*x^b
defines a replacement rule. However, they act the same way - most of the time. So it is a matter of taste.
$endgroup$
– Henrik Schumacher
1 hour ago
$begingroup$
@Pineapple Take a look at this tutorial on Defining Functions. Another good resource is the tutorial on Immediate and Delayed Definitions for the difference betweenSet
(=
) andSetDelayed
(:=
).
$endgroup$
– MarcoB
1 hour ago
add a comment |
$begingroup$
Why would you do 'function = {a,b} [Function] a x^b' instead of function[a_, b_, x_] = a*x^b?
$endgroup$
– Pineapple
1 hour ago
$begingroup$
Because[Function]
is easily entered with the escape sequence esc f n esc . AlsoFunction
defines a pure function whilefunction[a_, b_, x_] = a*x^b
defines a replacement rule. However, they act the same way - most of the time. So it is a matter of taste.
$endgroup$
– Henrik Schumacher
1 hour ago
$begingroup$
@Pineapple Take a look at this tutorial on Defining Functions. Another good resource is the tutorial on Immediate and Delayed Definitions for the difference betweenSet
(=
) andSetDelayed
(:=
).
$endgroup$
– MarcoB
1 hour ago
$begingroup$
Why would you do 'function = {a,b} [Function] a x^b' instead of function[a_, b_, x_] = a*x^b?
$endgroup$
– Pineapple
1 hour ago
$begingroup$
Why would you do 'function = {a,b} [Function] a x^b' instead of function[a_, b_, x_] = a*x^b?
$endgroup$
– Pineapple
1 hour ago
$begingroup$
Because
[Function]
is easily entered with the escape sequence esc f n esc . Also Function
defines a pure function while function[a_, b_, x_] = a*x^b
defines a replacement rule. However, they act the same way - most of the time. So it is a matter of taste.$endgroup$
– Henrik Schumacher
1 hour ago
$begingroup$
Because
[Function]
is easily entered with the escape sequence esc f n esc . Also Function
defines a pure function while function[a_, b_, x_] = a*x^b
defines a replacement rule. However, they act the same way - most of the time. So it is a matter of taste.$endgroup$
– Henrik Schumacher
1 hour ago
$begingroup$
@Pineapple Take a look at this tutorial on Defining Functions. Another good resource is the tutorial on Immediate and Delayed Definitions for the difference between
Set
(=
) and SetDelayed
(:=
).$endgroup$
– MarcoB
1 hour ago
$begingroup$
@Pineapple Take a look at this tutorial on Defining Functions. Another good resource is the tutorial on Immediate and Delayed Definitions for the difference between
Set
(=
) and SetDelayed
(:=
).$endgroup$
– MarcoB
1 hour ago
add a comment |
$begingroup$
Total[#*x^#2&@@@list]
x^2 + 3 x^4 + 5 x^6
$endgroup$
add a comment |
$begingroup$
Total[#*x^#2&@@@list]
x^2 + 3 x^4 + 5 x^6
$endgroup$
add a comment |
$begingroup$
Total[#*x^#2&@@@list]
x^2 + 3 x^4 + 5 x^6
$endgroup$
Total[#*x^#2&@@@list]
x^2 + 3 x^4 + 5 x^6
answered 1 hour ago
J42161217J42161217
3,935322
3,935322
add a comment |
add a comment |
$begingroup$
Total[(#[[1]] x^#[[2]]) & /@ list]
$endgroup$
$begingroup$
Amazing, thank you! Sorry - I'm very new to Mathematica.
$endgroup$
– Pineapple
1 hour ago
add a comment |
$begingroup$
Total[(#[[1]] x^#[[2]]) & /@ list]
$endgroup$
$begingroup$
Amazing, thank you! Sorry - I'm very new to Mathematica.
$endgroup$
– Pineapple
1 hour ago
add a comment |
$begingroup$
Total[(#[[1]] x^#[[2]]) & /@ list]
$endgroup$
Total[(#[[1]] x^#[[2]]) & /@ list]
answered 1 hour ago
David G. StorkDavid G. Stork
24.5k22153
24.5k22153
$begingroup$
Amazing, thank you! Sorry - I'm very new to Mathematica.
$endgroup$
– Pineapple
1 hour ago
add a comment |
$begingroup$
Amazing, thank you! Sorry - I'm very new to Mathematica.
$endgroup$
– Pineapple
1 hour ago
$begingroup$
Amazing, thank you! Sorry - I'm very new to Mathematica.
$endgroup$
– Pineapple
1 hour ago
$begingroup$
Amazing, thank you! Sorry - I'm very new to Mathematica.
$endgroup$
– Pineapple
1 hour ago
add a comment |
$begingroup$
Another way, perhaps easier on the eyes. Use a pattern to deconstruct the pairs in a function definition.
term[{a_, b_}] := a x^b
Then, Map
it to the list.
Total[term /@ list]
(* x^2 + 3 x^4 + 5 x^6 *)
$endgroup$
add a comment |
$begingroup$
Another way, perhaps easier on the eyes. Use a pattern to deconstruct the pairs in a function definition.
term[{a_, b_}] := a x^b
Then, Map
it to the list.
Total[term /@ list]
(* x^2 + 3 x^4 + 5 x^6 *)
$endgroup$
add a comment |
$begingroup$
Another way, perhaps easier on the eyes. Use a pattern to deconstruct the pairs in a function definition.
term[{a_, b_}] := a x^b
Then, Map
it to the list.
Total[term /@ list]
(* x^2 + 3 x^4 + 5 x^6 *)
$endgroup$
Another way, perhaps easier on the eyes. Use a pattern to deconstruct the pairs in a function definition.
term[{a_, b_}] := a x^b
Then, Map
it to the list.
Total[term /@ list]
(* x^2 + 3 x^4 + 5 x^6 *)
answered 51 mins ago
John DotyJohn Doty
7,17311024
7,17311024
add a comment |
add a comment |
$begingroup$
Inner[#1 x^#2 &, Sequence @@ Transpose@list, Plus]
x^2 + 3 x^4 + 5 x^6
One could expand this a bit to allow for different variables:
Clear[f]
f[coefflist_][var_] := Inner[#1 var^#2 &, Sequence @@ Transpose@coefflist, Plus]
so that
f[list][x]
x^2 + 3 x^4 + 5 x^6
but then:
f[list][t]
t^2 + 3 t^4 + 5 t^6
$endgroup$
add a comment |
$begingroup$
Inner[#1 x^#2 &, Sequence @@ Transpose@list, Plus]
x^2 + 3 x^4 + 5 x^6
One could expand this a bit to allow for different variables:
Clear[f]
f[coefflist_][var_] := Inner[#1 var^#2 &, Sequence @@ Transpose@coefflist, Plus]
so that
f[list][x]
x^2 + 3 x^4 + 5 x^6
but then:
f[list][t]
t^2 + 3 t^4 + 5 t^6
$endgroup$
add a comment |
$begingroup$
Inner[#1 x^#2 &, Sequence @@ Transpose@list, Plus]
x^2 + 3 x^4 + 5 x^6
One could expand this a bit to allow for different variables:
Clear[f]
f[coefflist_][var_] := Inner[#1 var^#2 &, Sequence @@ Transpose@coefflist, Plus]
so that
f[list][x]
x^2 + 3 x^4 + 5 x^6
but then:
f[list][t]
t^2 + 3 t^4 + 5 t^6
$endgroup$
Inner[#1 x^#2 &, Sequence @@ Transpose@list, Plus]
x^2 + 3 x^4 + 5 x^6
One could expand this a bit to allow for different variables:
Clear[f]
f[coefflist_][var_] := Inner[#1 var^#2 &, Sequence @@ Transpose@coefflist, Plus]
so that
f[list][x]
x^2 + 3 x^4 + 5 x^6
but then:
f[list][t]
t^2 + 3 t^4 + 5 t^6
edited 46 mins ago
answered 52 mins ago
MarcoBMarcoB
36.7k556113
36.7k556113
add a comment |
add a comment |
$begingroup$
ClearAll[fa, fb]
fa = FromCoefficientRules[Thread[#[[All, 2;;]] -> #[[All, 1]]], #2] &;
fb = Internal`FromCoefficientList[Normal@SparseArray[1 + #[[All, 2;;]]->#[[All, 1]]], #2] &;
Examples:
list1 = {{1, 2}, {3, 4}, {5, 6}};
{fa[list1, x], fb[list1, x]}
{x^2 + 3 x^4 + 5 x^6, x^2 + 3 x^4 + 5 x^6}
list2 = {{1, 3, 0}, {3, 2, 1}, {3, 1, 2}, {1, 0, 3}};
{fa[list2, {x, y}], fb[list2, {x, y}]}
{x^3 + 3 x^2 y + 3 x y^2 + y^3, x^3 + 3 x^2 y + 3 x y^2 + y^3}
$endgroup$
add a comment |
$begingroup$
ClearAll[fa, fb]
fa = FromCoefficientRules[Thread[#[[All, 2;;]] -> #[[All, 1]]], #2] &;
fb = Internal`FromCoefficientList[Normal@SparseArray[1 + #[[All, 2;;]]->#[[All, 1]]], #2] &;
Examples:
list1 = {{1, 2}, {3, 4}, {5, 6}};
{fa[list1, x], fb[list1, x]}
{x^2 + 3 x^4 + 5 x^6, x^2 + 3 x^4 + 5 x^6}
list2 = {{1, 3, 0}, {3, 2, 1}, {3, 1, 2}, {1, 0, 3}};
{fa[list2, {x, y}], fb[list2, {x, y}]}
{x^3 + 3 x^2 y + 3 x y^2 + y^3, x^3 + 3 x^2 y + 3 x y^2 + y^3}
$endgroup$
add a comment |
$begingroup$
ClearAll[fa, fb]
fa = FromCoefficientRules[Thread[#[[All, 2;;]] -> #[[All, 1]]], #2] &;
fb = Internal`FromCoefficientList[Normal@SparseArray[1 + #[[All, 2;;]]->#[[All, 1]]], #2] &;
Examples:
list1 = {{1, 2}, {3, 4}, {5, 6}};
{fa[list1, x], fb[list1, x]}
{x^2 + 3 x^4 + 5 x^6, x^2 + 3 x^4 + 5 x^6}
list2 = {{1, 3, 0}, {3, 2, 1}, {3, 1, 2}, {1, 0, 3}};
{fa[list2, {x, y}], fb[list2, {x, y}]}
{x^3 + 3 x^2 y + 3 x y^2 + y^3, x^3 + 3 x^2 y + 3 x y^2 + y^3}
$endgroup$
ClearAll[fa, fb]
fa = FromCoefficientRules[Thread[#[[All, 2;;]] -> #[[All, 1]]], #2] &;
fb = Internal`FromCoefficientList[Normal@SparseArray[1 + #[[All, 2;;]]->#[[All, 1]]], #2] &;
Examples:
list1 = {{1, 2}, {3, 4}, {5, 6}};
{fa[list1, x], fb[list1, x]}
{x^2 + 3 x^4 + 5 x^6, x^2 + 3 x^4 + 5 x^6}
list2 = {{1, 3, 0}, {3, 2, 1}, {3, 1, 2}, {1, 0, 3}};
{fa[list2, {x, y}], fb[list2, {x, y}]}
{x^3 + 3 x^2 y + 3 x y^2 + y^3, x^3 + 3 x^2 y + 3 x y^2 + y^3}
edited 42 mins ago
answered 54 mins ago
kglrkglr
187k10203422
187k10203422
add a comment |
add a comment |
Pineapple is a new contributor. Be nice, and check out our Code of Conduct.
Pineapple is a new contributor. Be nice, and check out our Code of Conduct.
Pineapple is a new contributor. Be nice, and check out our Code of Conduct.
Pineapple is a new contributor. Be nice, and check out our Code of Conduct.
Thanks for contributing an answer to Mathematica Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathematica.stackexchange.com%2fquestions%2f192691%2fhow-to-substitute-values-from-a-list-into-a-function%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
#1 x^#2 & @@@ {{1, 2}, {3, 4}, {5, 6}} // Total
$endgroup$
– Okkes Dulgerci
20 mins ago