On the evalution of an infinite sum
$begingroup$
I wish to show that
$$sum_{n = 0}^infty (-1)^n left [frac{2n + 1/2}{(2n + 1/2)^2 + 1} + frac{2n + 3/2}{(2n + 3/2)^2 + 1} right] = frac{pi}{sqrt{2}} frac{cosh left (frac{pi}{2} right )}{cosh (pi)}.$$
The reason I wish to find such a sum is as follows.
The question here called for the evaluation (I have added its value) of
$$int_0^infty frac{sqrt{x} cos (ln x)}{x^2 + 1} , dx = frac{pi}{sqrt{2}} frac{cosh left (frac{pi}{2} right )}{cosh (pi)}.$$
As one of the comments, the OP remarked that they would like to see different approaches to the evaluation of the integral so I thought I would try my hand at one that does not rely on contour integration and the residue theorem. My approach was as follows:
begin{align}
int_0^infty frac{sqrt{x} cos (ln x)}{x^2 + 1} , dx &= int_0^1 frac{sqrt{x} cos (ln x)}{x^2 + 1} , dx + int_1^infty frac{sqrt{x} cos (ln x)}{x^2 + 1} , dx\
&= int_0^1 frac{cos (ln x) (x + 1)}{sqrt{x} (1 + x^2)} , dx,
end{align}
after a substitution of $x mapsto 1/x$ has been enforced in the second of the integrals. Now if we enforce a substitution of $x mapsto e^{-x}$ one arrives at
$$int_0^infty frac{sqrt{x} cos (ln x)}{x^2 + 1} , dx = int_0^infty frac{cos x cosh (x/2)}{cosh x} , dx.$$
Writing the hyperbolic functions in terms of exponentials we have
begin{align}
int_0^infty frac{sqrt{x} cos (ln x)}{x^2 + 1} , dx &= int_0^infty frac{cos x (e^{-x/2} + e^{-3x/2})}{1 + e^{-2x}} , dx\
&= text{Re} sum_{n = 0}^infty (-1)^n int_0^infty left [e^{-(2n + 1/2 - i) x} + e^{-(2n + 3/2 - i)x} right ] , dx\
&= text{Re} sum_{n = 0}^infty (-1)^n left [frac{1}{2n + 1/2 - i} + frac{1}{2n + 3/2 - i} right ] tag1\
&= sum_{n = 0}^infty (-1)^n left [frac{2n + 1/2}{(2n + 1/2)^2 + 1} + frac{2n + 3/2}{(2n + 3/2)^2 + 1} right],
end{align}
which brings me to my sum.
Some thoughts on finding this sum
Rewriting the sum $S$ in (1) as follows:
begin{align}
S &= text{Re} cdot frac{1}{4} sum_{n = 0}^infty left [frac{1}{n + 1/8 - i/4} + frac{1}{n + 3/8 - i/4} - frac{1}{n + 5/8 - i/4} - frac{1}{n + 7/8 - i/4} right ]\
&= text{Re} cdot frac{1}{4} sum_{n = 0}^infty left (frac{1}{n + 1} - frac{1}{n + 7/8 - i/4} right ) + frac{1}{4} sum_{n = 0}^infty left (frac{1}{n + 1} - frac{1}{n + 5/8 - i/4} right )\
& qquad - frac{1}{4} sum_{n = 0}^infty left (frac{1}{n + 1} - frac{1}{n + 3/8 - i/4} right ) - frac{1}{4} sum_{n = 0}^infty left (frac{1}{n + 1} - frac{1}{n + 1/8 - i/4} right )\
&= frac{1}{4} text{Re} left [psi left (frac{7}{8} - frac{i}{4} right ) + psi left (frac{5}{8} - frac{i}{4} right ) - psi left (frac{3}{8} - frac{i}{4} right ) - psi left (frac{1}{8} - frac{i}{4} right ) right ].
end{align}
Here $psi (z)$ is the digamma function. I was rather hoping to use the reflexion formula for the digamma function, but alas it does not seem to take me any closer to a final real solution.
Final thought
While it would be nice to see how to evaluate this sum, perhaps my approach was not the best so alternative methods to evaluate the integral that avoid this sum and do not rely on contour integration would also be welcome.
integration sequences-and-series definite-integrals improper-integrals closed-form
$endgroup$
add a comment |
$begingroup$
I wish to show that
$$sum_{n = 0}^infty (-1)^n left [frac{2n + 1/2}{(2n + 1/2)^2 + 1} + frac{2n + 3/2}{(2n + 3/2)^2 + 1} right] = frac{pi}{sqrt{2}} frac{cosh left (frac{pi}{2} right )}{cosh (pi)}.$$
The reason I wish to find such a sum is as follows.
The question here called for the evaluation (I have added its value) of
$$int_0^infty frac{sqrt{x} cos (ln x)}{x^2 + 1} , dx = frac{pi}{sqrt{2}} frac{cosh left (frac{pi}{2} right )}{cosh (pi)}.$$
As one of the comments, the OP remarked that they would like to see different approaches to the evaluation of the integral so I thought I would try my hand at one that does not rely on contour integration and the residue theorem. My approach was as follows:
begin{align}
int_0^infty frac{sqrt{x} cos (ln x)}{x^2 + 1} , dx &= int_0^1 frac{sqrt{x} cos (ln x)}{x^2 + 1} , dx + int_1^infty frac{sqrt{x} cos (ln x)}{x^2 + 1} , dx\
&= int_0^1 frac{cos (ln x) (x + 1)}{sqrt{x} (1 + x^2)} , dx,
end{align}
after a substitution of $x mapsto 1/x$ has been enforced in the second of the integrals. Now if we enforce a substitution of $x mapsto e^{-x}$ one arrives at
$$int_0^infty frac{sqrt{x} cos (ln x)}{x^2 + 1} , dx = int_0^infty frac{cos x cosh (x/2)}{cosh x} , dx.$$
Writing the hyperbolic functions in terms of exponentials we have
begin{align}
int_0^infty frac{sqrt{x} cos (ln x)}{x^2 + 1} , dx &= int_0^infty frac{cos x (e^{-x/2} + e^{-3x/2})}{1 + e^{-2x}} , dx\
&= text{Re} sum_{n = 0}^infty (-1)^n int_0^infty left [e^{-(2n + 1/2 - i) x} + e^{-(2n + 3/2 - i)x} right ] , dx\
&= text{Re} sum_{n = 0}^infty (-1)^n left [frac{1}{2n + 1/2 - i} + frac{1}{2n + 3/2 - i} right ] tag1\
&= sum_{n = 0}^infty (-1)^n left [frac{2n + 1/2}{(2n + 1/2)^2 + 1} + frac{2n + 3/2}{(2n + 3/2)^2 + 1} right],
end{align}
which brings me to my sum.
Some thoughts on finding this sum
Rewriting the sum $S$ in (1) as follows:
begin{align}
S &= text{Re} cdot frac{1}{4} sum_{n = 0}^infty left [frac{1}{n + 1/8 - i/4} + frac{1}{n + 3/8 - i/4} - frac{1}{n + 5/8 - i/4} - frac{1}{n + 7/8 - i/4} right ]\
&= text{Re} cdot frac{1}{4} sum_{n = 0}^infty left (frac{1}{n + 1} - frac{1}{n + 7/8 - i/4} right ) + frac{1}{4} sum_{n = 0}^infty left (frac{1}{n + 1} - frac{1}{n + 5/8 - i/4} right )\
& qquad - frac{1}{4} sum_{n = 0}^infty left (frac{1}{n + 1} - frac{1}{n + 3/8 - i/4} right ) - frac{1}{4} sum_{n = 0}^infty left (frac{1}{n + 1} - frac{1}{n + 1/8 - i/4} right )\
&= frac{1}{4} text{Re} left [psi left (frac{7}{8} - frac{i}{4} right ) + psi left (frac{5}{8} - frac{i}{4} right ) - psi left (frac{3}{8} - frac{i}{4} right ) - psi left (frac{1}{8} - frac{i}{4} right ) right ].
end{align}
Here $psi (z)$ is the digamma function. I was rather hoping to use the reflexion formula for the digamma function, but alas it does not seem to take me any closer to a final real solution.
Final thought
While it would be nice to see how to evaluate this sum, perhaps my approach was not the best so alternative methods to evaluate the integral that avoid this sum and do not rely on contour integration would also be welcome.
integration sequences-and-series definite-integrals improper-integrals closed-form
$endgroup$
add a comment |
$begingroup$
I wish to show that
$$sum_{n = 0}^infty (-1)^n left [frac{2n + 1/2}{(2n + 1/2)^2 + 1} + frac{2n + 3/2}{(2n + 3/2)^2 + 1} right] = frac{pi}{sqrt{2}} frac{cosh left (frac{pi}{2} right )}{cosh (pi)}.$$
The reason I wish to find such a sum is as follows.
The question here called for the evaluation (I have added its value) of
$$int_0^infty frac{sqrt{x} cos (ln x)}{x^2 + 1} , dx = frac{pi}{sqrt{2}} frac{cosh left (frac{pi}{2} right )}{cosh (pi)}.$$
As one of the comments, the OP remarked that they would like to see different approaches to the evaluation of the integral so I thought I would try my hand at one that does not rely on contour integration and the residue theorem. My approach was as follows:
begin{align}
int_0^infty frac{sqrt{x} cos (ln x)}{x^2 + 1} , dx &= int_0^1 frac{sqrt{x} cos (ln x)}{x^2 + 1} , dx + int_1^infty frac{sqrt{x} cos (ln x)}{x^2 + 1} , dx\
&= int_0^1 frac{cos (ln x) (x + 1)}{sqrt{x} (1 + x^2)} , dx,
end{align}
after a substitution of $x mapsto 1/x$ has been enforced in the second of the integrals. Now if we enforce a substitution of $x mapsto e^{-x}$ one arrives at
$$int_0^infty frac{sqrt{x} cos (ln x)}{x^2 + 1} , dx = int_0^infty frac{cos x cosh (x/2)}{cosh x} , dx.$$
Writing the hyperbolic functions in terms of exponentials we have
begin{align}
int_0^infty frac{sqrt{x} cos (ln x)}{x^2 + 1} , dx &= int_0^infty frac{cos x (e^{-x/2} + e^{-3x/2})}{1 + e^{-2x}} , dx\
&= text{Re} sum_{n = 0}^infty (-1)^n int_0^infty left [e^{-(2n + 1/2 - i) x} + e^{-(2n + 3/2 - i)x} right ] , dx\
&= text{Re} sum_{n = 0}^infty (-1)^n left [frac{1}{2n + 1/2 - i} + frac{1}{2n + 3/2 - i} right ] tag1\
&= sum_{n = 0}^infty (-1)^n left [frac{2n + 1/2}{(2n + 1/2)^2 + 1} + frac{2n + 3/2}{(2n + 3/2)^2 + 1} right],
end{align}
which brings me to my sum.
Some thoughts on finding this sum
Rewriting the sum $S$ in (1) as follows:
begin{align}
S &= text{Re} cdot frac{1}{4} sum_{n = 0}^infty left [frac{1}{n + 1/8 - i/4} + frac{1}{n + 3/8 - i/4} - frac{1}{n + 5/8 - i/4} - frac{1}{n + 7/8 - i/4} right ]\
&= text{Re} cdot frac{1}{4} sum_{n = 0}^infty left (frac{1}{n + 1} - frac{1}{n + 7/8 - i/4} right ) + frac{1}{4} sum_{n = 0}^infty left (frac{1}{n + 1} - frac{1}{n + 5/8 - i/4} right )\
& qquad - frac{1}{4} sum_{n = 0}^infty left (frac{1}{n + 1} - frac{1}{n + 3/8 - i/4} right ) - frac{1}{4} sum_{n = 0}^infty left (frac{1}{n + 1} - frac{1}{n + 1/8 - i/4} right )\
&= frac{1}{4} text{Re} left [psi left (frac{7}{8} - frac{i}{4} right ) + psi left (frac{5}{8} - frac{i}{4} right ) - psi left (frac{3}{8} - frac{i}{4} right ) - psi left (frac{1}{8} - frac{i}{4} right ) right ].
end{align}
Here $psi (z)$ is the digamma function. I was rather hoping to use the reflexion formula for the digamma function, but alas it does not seem to take me any closer to a final real solution.
Final thought
While it would be nice to see how to evaluate this sum, perhaps my approach was not the best so alternative methods to evaluate the integral that avoid this sum and do not rely on contour integration would also be welcome.
integration sequences-and-series definite-integrals improper-integrals closed-form
$endgroup$
I wish to show that
$$sum_{n = 0}^infty (-1)^n left [frac{2n + 1/2}{(2n + 1/2)^2 + 1} + frac{2n + 3/2}{(2n + 3/2)^2 + 1} right] = frac{pi}{sqrt{2}} frac{cosh left (frac{pi}{2} right )}{cosh (pi)}.$$
The reason I wish to find such a sum is as follows.
The question here called for the evaluation (I have added its value) of
$$int_0^infty frac{sqrt{x} cos (ln x)}{x^2 + 1} , dx = frac{pi}{sqrt{2}} frac{cosh left (frac{pi}{2} right )}{cosh (pi)}.$$
As one of the comments, the OP remarked that they would like to see different approaches to the evaluation of the integral so I thought I would try my hand at one that does not rely on contour integration and the residue theorem. My approach was as follows:
begin{align}
int_0^infty frac{sqrt{x} cos (ln x)}{x^2 + 1} , dx &= int_0^1 frac{sqrt{x} cos (ln x)}{x^2 + 1} , dx + int_1^infty frac{sqrt{x} cos (ln x)}{x^2 + 1} , dx\
&= int_0^1 frac{cos (ln x) (x + 1)}{sqrt{x} (1 + x^2)} , dx,
end{align}
after a substitution of $x mapsto 1/x$ has been enforced in the second of the integrals. Now if we enforce a substitution of $x mapsto e^{-x}$ one arrives at
$$int_0^infty frac{sqrt{x} cos (ln x)}{x^2 + 1} , dx = int_0^infty frac{cos x cosh (x/2)}{cosh x} , dx.$$
Writing the hyperbolic functions in terms of exponentials we have
begin{align}
int_0^infty frac{sqrt{x} cos (ln x)}{x^2 + 1} , dx &= int_0^infty frac{cos x (e^{-x/2} + e^{-3x/2})}{1 + e^{-2x}} , dx\
&= text{Re} sum_{n = 0}^infty (-1)^n int_0^infty left [e^{-(2n + 1/2 - i) x} + e^{-(2n + 3/2 - i)x} right ] , dx\
&= text{Re} sum_{n = 0}^infty (-1)^n left [frac{1}{2n + 1/2 - i} + frac{1}{2n + 3/2 - i} right ] tag1\
&= sum_{n = 0}^infty (-1)^n left [frac{2n + 1/2}{(2n + 1/2)^2 + 1} + frac{2n + 3/2}{(2n + 3/2)^2 + 1} right],
end{align}
which brings me to my sum.
Some thoughts on finding this sum
Rewriting the sum $S$ in (1) as follows:
begin{align}
S &= text{Re} cdot frac{1}{4} sum_{n = 0}^infty left [frac{1}{n + 1/8 - i/4} + frac{1}{n + 3/8 - i/4} - frac{1}{n + 5/8 - i/4} - frac{1}{n + 7/8 - i/4} right ]\
&= text{Re} cdot frac{1}{4} sum_{n = 0}^infty left (frac{1}{n + 1} - frac{1}{n + 7/8 - i/4} right ) + frac{1}{4} sum_{n = 0}^infty left (frac{1}{n + 1} - frac{1}{n + 5/8 - i/4} right )\
& qquad - frac{1}{4} sum_{n = 0}^infty left (frac{1}{n + 1} - frac{1}{n + 3/8 - i/4} right ) - frac{1}{4} sum_{n = 0}^infty left (frac{1}{n + 1} - frac{1}{n + 1/8 - i/4} right )\
&= frac{1}{4} text{Re} left [psi left (frac{7}{8} - frac{i}{4} right ) + psi left (frac{5}{8} - frac{i}{4} right ) - psi left (frac{3}{8} - frac{i}{4} right ) - psi left (frac{1}{8} - frac{i}{4} right ) right ].
end{align}
Here $psi (z)$ is the digamma function. I was rather hoping to use the reflexion formula for the digamma function, but alas it does not seem to take me any closer to a final real solution.
Final thought
While it would be nice to see how to evaluate this sum, perhaps my approach was not the best so alternative methods to evaluate the integral that avoid this sum and do not rely on contour integration would also be welcome.
integration sequences-and-series definite-integrals improper-integrals closed-form
integration sequences-and-series definite-integrals improper-integrals closed-form
edited 52 mins ago
omegadot
asked 1 hour ago
omegadotomegadot
5,2792728
5,2792728
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
$$
begin{align}newcommand{Re}{operatorname{Re}}
&sum_{n=0}^infty(-1)^nleft[frac{2n+1/2}{(2n+1/2)^2+1}+frac{2n+3/2}{(2n+3/2)^2+1}right]tag1\
&=frac12sum_{ninmathbb{Z}}(-1)^nleft[frac{2n+1/2}{(2n+1/2)^2+1}+frac{2n+3/2}{(2n+3/2)^2+1}right]tag2\
&=frac14sum_{ninmathbb{Z}}(-1)^nleft[frac{n+frac14}{left(n+frac14right)^2+frac14}+frac{n+frac34}{left(n+frac34right)^2+frac14}right]tag3\
&=frac18sum_{ninmathbb{Z}}(-1)^nleft[frac1{n+frac14-frac i2}+frac1{n+frac14+frac i2}+frac1{n+frac34-frac i2}+frac1{n+frac34+frac i2}right]tag4\
&=frac18left[fracpi{sinleft(pi!left(frac14-frac i2right)right)}+fracpi{sinleft(pi!left(frac14+frac i2right)right)}+fracpi{sinleft(pi!left(frac34-frac i2right)right)}+fracpi{sinleft(pi!left(frac34+frac i2right)right)}right]tag5\
&=frac{pisqrt2}8left[
frac{coshleft(fracpi2right)+isinhleft(fracpi2right)}{cosh(pi)}+
frac{coshleft(fracpi2right)-isinhleft(fracpi2right)}{cosh(pi)}+
frac{coshleft(fracpi2right)-isinhleft(fracpi2right)}{cosh(pi)}right.\
&left.phantom{=frac{pisqrt2}8}+
frac{coshleft(fracpi2right)+isinhleft(fracpi2right)}{cosh(pi)}right]tag6\
&=fracpi{sqrt2}frac{cosh(pi/2)}{cosh(pi)}tag7
end{align}
$$
Explanation:
$(2)$: use symmetry
$(3)$: pull factor of $frac12$ out front
$(4)$: partial fractions
$(5)$: use $(3)$ from this answer
$(6)$: evaluate the sine of a complex number
$(7)$: simplify
$endgroup$
$begingroup$
Given the form of the final answer, I thought there would be a Mittag-Leffler expansion hiding in there somewhere. Nice work and thanks (+1).
$endgroup$
– omegadot
37 mins ago
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3088089%2fon-the-evalution-of-an-infinite-sum%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
$$
begin{align}newcommand{Re}{operatorname{Re}}
&sum_{n=0}^infty(-1)^nleft[frac{2n+1/2}{(2n+1/2)^2+1}+frac{2n+3/2}{(2n+3/2)^2+1}right]tag1\
&=frac12sum_{ninmathbb{Z}}(-1)^nleft[frac{2n+1/2}{(2n+1/2)^2+1}+frac{2n+3/2}{(2n+3/2)^2+1}right]tag2\
&=frac14sum_{ninmathbb{Z}}(-1)^nleft[frac{n+frac14}{left(n+frac14right)^2+frac14}+frac{n+frac34}{left(n+frac34right)^2+frac14}right]tag3\
&=frac18sum_{ninmathbb{Z}}(-1)^nleft[frac1{n+frac14-frac i2}+frac1{n+frac14+frac i2}+frac1{n+frac34-frac i2}+frac1{n+frac34+frac i2}right]tag4\
&=frac18left[fracpi{sinleft(pi!left(frac14-frac i2right)right)}+fracpi{sinleft(pi!left(frac14+frac i2right)right)}+fracpi{sinleft(pi!left(frac34-frac i2right)right)}+fracpi{sinleft(pi!left(frac34+frac i2right)right)}right]tag5\
&=frac{pisqrt2}8left[
frac{coshleft(fracpi2right)+isinhleft(fracpi2right)}{cosh(pi)}+
frac{coshleft(fracpi2right)-isinhleft(fracpi2right)}{cosh(pi)}+
frac{coshleft(fracpi2right)-isinhleft(fracpi2right)}{cosh(pi)}right.\
&left.phantom{=frac{pisqrt2}8}+
frac{coshleft(fracpi2right)+isinhleft(fracpi2right)}{cosh(pi)}right]tag6\
&=fracpi{sqrt2}frac{cosh(pi/2)}{cosh(pi)}tag7
end{align}
$$
Explanation:
$(2)$: use symmetry
$(3)$: pull factor of $frac12$ out front
$(4)$: partial fractions
$(5)$: use $(3)$ from this answer
$(6)$: evaluate the sine of a complex number
$(7)$: simplify
$endgroup$
$begingroup$
Given the form of the final answer, I thought there would be a Mittag-Leffler expansion hiding in there somewhere. Nice work and thanks (+1).
$endgroup$
– omegadot
37 mins ago
add a comment |
$begingroup$
$$
begin{align}newcommand{Re}{operatorname{Re}}
&sum_{n=0}^infty(-1)^nleft[frac{2n+1/2}{(2n+1/2)^2+1}+frac{2n+3/2}{(2n+3/2)^2+1}right]tag1\
&=frac12sum_{ninmathbb{Z}}(-1)^nleft[frac{2n+1/2}{(2n+1/2)^2+1}+frac{2n+3/2}{(2n+3/2)^2+1}right]tag2\
&=frac14sum_{ninmathbb{Z}}(-1)^nleft[frac{n+frac14}{left(n+frac14right)^2+frac14}+frac{n+frac34}{left(n+frac34right)^2+frac14}right]tag3\
&=frac18sum_{ninmathbb{Z}}(-1)^nleft[frac1{n+frac14-frac i2}+frac1{n+frac14+frac i2}+frac1{n+frac34-frac i2}+frac1{n+frac34+frac i2}right]tag4\
&=frac18left[fracpi{sinleft(pi!left(frac14-frac i2right)right)}+fracpi{sinleft(pi!left(frac14+frac i2right)right)}+fracpi{sinleft(pi!left(frac34-frac i2right)right)}+fracpi{sinleft(pi!left(frac34+frac i2right)right)}right]tag5\
&=frac{pisqrt2}8left[
frac{coshleft(fracpi2right)+isinhleft(fracpi2right)}{cosh(pi)}+
frac{coshleft(fracpi2right)-isinhleft(fracpi2right)}{cosh(pi)}+
frac{coshleft(fracpi2right)-isinhleft(fracpi2right)}{cosh(pi)}right.\
&left.phantom{=frac{pisqrt2}8}+
frac{coshleft(fracpi2right)+isinhleft(fracpi2right)}{cosh(pi)}right]tag6\
&=fracpi{sqrt2}frac{cosh(pi/2)}{cosh(pi)}tag7
end{align}
$$
Explanation:
$(2)$: use symmetry
$(3)$: pull factor of $frac12$ out front
$(4)$: partial fractions
$(5)$: use $(3)$ from this answer
$(6)$: evaluate the sine of a complex number
$(7)$: simplify
$endgroup$
$begingroup$
Given the form of the final answer, I thought there would be a Mittag-Leffler expansion hiding in there somewhere. Nice work and thanks (+1).
$endgroup$
– omegadot
37 mins ago
add a comment |
$begingroup$
$$
begin{align}newcommand{Re}{operatorname{Re}}
&sum_{n=0}^infty(-1)^nleft[frac{2n+1/2}{(2n+1/2)^2+1}+frac{2n+3/2}{(2n+3/2)^2+1}right]tag1\
&=frac12sum_{ninmathbb{Z}}(-1)^nleft[frac{2n+1/2}{(2n+1/2)^2+1}+frac{2n+3/2}{(2n+3/2)^2+1}right]tag2\
&=frac14sum_{ninmathbb{Z}}(-1)^nleft[frac{n+frac14}{left(n+frac14right)^2+frac14}+frac{n+frac34}{left(n+frac34right)^2+frac14}right]tag3\
&=frac18sum_{ninmathbb{Z}}(-1)^nleft[frac1{n+frac14-frac i2}+frac1{n+frac14+frac i2}+frac1{n+frac34-frac i2}+frac1{n+frac34+frac i2}right]tag4\
&=frac18left[fracpi{sinleft(pi!left(frac14-frac i2right)right)}+fracpi{sinleft(pi!left(frac14+frac i2right)right)}+fracpi{sinleft(pi!left(frac34-frac i2right)right)}+fracpi{sinleft(pi!left(frac34+frac i2right)right)}right]tag5\
&=frac{pisqrt2}8left[
frac{coshleft(fracpi2right)+isinhleft(fracpi2right)}{cosh(pi)}+
frac{coshleft(fracpi2right)-isinhleft(fracpi2right)}{cosh(pi)}+
frac{coshleft(fracpi2right)-isinhleft(fracpi2right)}{cosh(pi)}right.\
&left.phantom{=frac{pisqrt2}8}+
frac{coshleft(fracpi2right)+isinhleft(fracpi2right)}{cosh(pi)}right]tag6\
&=fracpi{sqrt2}frac{cosh(pi/2)}{cosh(pi)}tag7
end{align}
$$
Explanation:
$(2)$: use symmetry
$(3)$: pull factor of $frac12$ out front
$(4)$: partial fractions
$(5)$: use $(3)$ from this answer
$(6)$: evaluate the sine of a complex number
$(7)$: simplify
$endgroup$
$$
begin{align}newcommand{Re}{operatorname{Re}}
&sum_{n=0}^infty(-1)^nleft[frac{2n+1/2}{(2n+1/2)^2+1}+frac{2n+3/2}{(2n+3/2)^2+1}right]tag1\
&=frac12sum_{ninmathbb{Z}}(-1)^nleft[frac{2n+1/2}{(2n+1/2)^2+1}+frac{2n+3/2}{(2n+3/2)^2+1}right]tag2\
&=frac14sum_{ninmathbb{Z}}(-1)^nleft[frac{n+frac14}{left(n+frac14right)^2+frac14}+frac{n+frac34}{left(n+frac34right)^2+frac14}right]tag3\
&=frac18sum_{ninmathbb{Z}}(-1)^nleft[frac1{n+frac14-frac i2}+frac1{n+frac14+frac i2}+frac1{n+frac34-frac i2}+frac1{n+frac34+frac i2}right]tag4\
&=frac18left[fracpi{sinleft(pi!left(frac14-frac i2right)right)}+fracpi{sinleft(pi!left(frac14+frac i2right)right)}+fracpi{sinleft(pi!left(frac34-frac i2right)right)}+fracpi{sinleft(pi!left(frac34+frac i2right)right)}right]tag5\
&=frac{pisqrt2}8left[
frac{coshleft(fracpi2right)+isinhleft(fracpi2right)}{cosh(pi)}+
frac{coshleft(fracpi2right)-isinhleft(fracpi2right)}{cosh(pi)}+
frac{coshleft(fracpi2right)-isinhleft(fracpi2right)}{cosh(pi)}right.\
&left.phantom{=frac{pisqrt2}8}+
frac{coshleft(fracpi2right)+isinhleft(fracpi2right)}{cosh(pi)}right]tag6\
&=fracpi{sqrt2}frac{cosh(pi/2)}{cosh(pi)}tag7
end{align}
$$
Explanation:
$(2)$: use symmetry
$(3)$: pull factor of $frac12$ out front
$(4)$: partial fractions
$(5)$: use $(3)$ from this answer
$(6)$: evaluate the sine of a complex number
$(7)$: simplify
edited 51 mins ago
answered 1 hour ago
robjohn♦robjohn
266k27305628
266k27305628
$begingroup$
Given the form of the final answer, I thought there would be a Mittag-Leffler expansion hiding in there somewhere. Nice work and thanks (+1).
$endgroup$
– omegadot
37 mins ago
add a comment |
$begingroup$
Given the form of the final answer, I thought there would be a Mittag-Leffler expansion hiding in there somewhere. Nice work and thanks (+1).
$endgroup$
– omegadot
37 mins ago
$begingroup$
Given the form of the final answer, I thought there would be a Mittag-Leffler expansion hiding in there somewhere. Nice work and thanks (+1).
$endgroup$
– omegadot
37 mins ago
$begingroup$
Given the form of the final answer, I thought there would be a Mittag-Leffler expansion hiding in there somewhere. Nice work and thanks (+1).
$endgroup$
– omegadot
37 mins ago
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3088089%2fon-the-evalution-of-an-infinite-sum%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown