Why do we call complex numbers “numbers” but we don’t consider 2 vectors numbers?












4












$begingroup$


We refer to complex numbers as numbers. However we refer to vectors as arrays of numbers. There doesn’t seem to be anything that makes one more numeric than the other. Is this just a quirk of history and naming or is there something more fundamental?










share|cite|improve this question











$endgroup$








  • 5




    $begingroup$
    Usually, the difference would be whether you're in a context where complex multiplication would be interesting. It's kind of like the question: is $mathbb{Z}$ a group or a ring? It depends on which operations are of interest for the question you're studying.
    $endgroup$
    – Nate Eldredge
    54 mins ago








  • 2




    $begingroup$
    What's a "number" anyway?
    $endgroup$
    – Asaf Karagila
    42 mins ago










  • $begingroup$
    I would say that $mathbb{Z}$ is not a ring or a group as you have to have an operator in order to be a magma. However that would be over pedantic so I get where you are coming from.
    $endgroup$
    – Q the Platypus
    33 mins ago






  • 2




    $begingroup$
    @QthePlatypus: No, that's exactly the point. The question of whether the set $mathbb{R}^2$ of pairs of real numbers should be considered as the set of complex numbers, or as a set of vectors, depends on which operations you wish to equip that set with.
    $endgroup$
    – Nate Eldredge
    26 mins ago










  • $begingroup$
    I think the correct question were: is there a rigorous definition of the object "number" (without further characteristics such as "integer", "real", "complex" etc.)?
    $endgroup$
    – user
    18 mins ago


















4












$begingroup$


We refer to complex numbers as numbers. However we refer to vectors as arrays of numbers. There doesn’t seem to be anything that makes one more numeric than the other. Is this just a quirk of history and naming or is there something more fundamental?










share|cite|improve this question











$endgroup$








  • 5




    $begingroup$
    Usually, the difference would be whether you're in a context where complex multiplication would be interesting. It's kind of like the question: is $mathbb{Z}$ a group or a ring? It depends on which operations are of interest for the question you're studying.
    $endgroup$
    – Nate Eldredge
    54 mins ago








  • 2




    $begingroup$
    What's a "number" anyway?
    $endgroup$
    – Asaf Karagila
    42 mins ago










  • $begingroup$
    I would say that $mathbb{Z}$ is not a ring or a group as you have to have an operator in order to be a magma. However that would be over pedantic so I get where you are coming from.
    $endgroup$
    – Q the Platypus
    33 mins ago






  • 2




    $begingroup$
    @QthePlatypus: No, that's exactly the point. The question of whether the set $mathbb{R}^2$ of pairs of real numbers should be considered as the set of complex numbers, or as a set of vectors, depends on which operations you wish to equip that set with.
    $endgroup$
    – Nate Eldredge
    26 mins ago










  • $begingroup$
    I think the correct question were: is there a rigorous definition of the object "number" (without further characteristics such as "integer", "real", "complex" etc.)?
    $endgroup$
    – user
    18 mins ago
















4












4








4


1



$begingroup$


We refer to complex numbers as numbers. However we refer to vectors as arrays of numbers. There doesn’t seem to be anything that makes one more numeric than the other. Is this just a quirk of history and naming or is there something more fundamental?










share|cite|improve this question











$endgroup$




We refer to complex numbers as numbers. However we refer to vectors as arrays of numbers. There doesn’t seem to be anything that makes one more numeric than the other. Is this just a quirk of history and naming or is there something more fundamental?







matrices complex-numbers philosophy






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited 26 mins ago









Bernard

122k740116




122k740116










asked 59 mins ago









Q the PlatypusQ the Platypus

2,782933




2,782933








  • 5




    $begingroup$
    Usually, the difference would be whether you're in a context where complex multiplication would be interesting. It's kind of like the question: is $mathbb{Z}$ a group or a ring? It depends on which operations are of interest for the question you're studying.
    $endgroup$
    – Nate Eldredge
    54 mins ago








  • 2




    $begingroup$
    What's a "number" anyway?
    $endgroup$
    – Asaf Karagila
    42 mins ago










  • $begingroup$
    I would say that $mathbb{Z}$ is not a ring or a group as you have to have an operator in order to be a magma. However that would be over pedantic so I get where you are coming from.
    $endgroup$
    – Q the Platypus
    33 mins ago






  • 2




    $begingroup$
    @QthePlatypus: No, that's exactly the point. The question of whether the set $mathbb{R}^2$ of pairs of real numbers should be considered as the set of complex numbers, or as a set of vectors, depends on which operations you wish to equip that set with.
    $endgroup$
    – Nate Eldredge
    26 mins ago










  • $begingroup$
    I think the correct question were: is there a rigorous definition of the object "number" (without further characteristics such as "integer", "real", "complex" etc.)?
    $endgroup$
    – user
    18 mins ago
















  • 5




    $begingroup$
    Usually, the difference would be whether you're in a context where complex multiplication would be interesting. It's kind of like the question: is $mathbb{Z}$ a group or a ring? It depends on which operations are of interest for the question you're studying.
    $endgroup$
    – Nate Eldredge
    54 mins ago








  • 2




    $begingroup$
    What's a "number" anyway?
    $endgroup$
    – Asaf Karagila
    42 mins ago










  • $begingroup$
    I would say that $mathbb{Z}$ is not a ring or a group as you have to have an operator in order to be a magma. However that would be over pedantic so I get where you are coming from.
    $endgroup$
    – Q the Platypus
    33 mins ago






  • 2




    $begingroup$
    @QthePlatypus: No, that's exactly the point. The question of whether the set $mathbb{R}^2$ of pairs of real numbers should be considered as the set of complex numbers, or as a set of vectors, depends on which operations you wish to equip that set with.
    $endgroup$
    – Nate Eldredge
    26 mins ago










  • $begingroup$
    I think the correct question were: is there a rigorous definition of the object "number" (without further characteristics such as "integer", "real", "complex" etc.)?
    $endgroup$
    – user
    18 mins ago










5




5




$begingroup$
Usually, the difference would be whether you're in a context where complex multiplication would be interesting. It's kind of like the question: is $mathbb{Z}$ a group or a ring? It depends on which operations are of interest for the question you're studying.
$endgroup$
– Nate Eldredge
54 mins ago






$begingroup$
Usually, the difference would be whether you're in a context where complex multiplication would be interesting. It's kind of like the question: is $mathbb{Z}$ a group or a ring? It depends on which operations are of interest for the question you're studying.
$endgroup$
– Nate Eldredge
54 mins ago






2




2




$begingroup$
What's a "number" anyway?
$endgroup$
– Asaf Karagila
42 mins ago




$begingroup$
What's a "number" anyway?
$endgroup$
– Asaf Karagila
42 mins ago












$begingroup$
I would say that $mathbb{Z}$ is not a ring or a group as you have to have an operator in order to be a magma. However that would be over pedantic so I get where you are coming from.
$endgroup$
– Q the Platypus
33 mins ago




$begingroup$
I would say that $mathbb{Z}$ is not a ring or a group as you have to have an operator in order to be a magma. However that would be over pedantic so I get where you are coming from.
$endgroup$
– Q the Platypus
33 mins ago




2




2




$begingroup$
@QthePlatypus: No, that's exactly the point. The question of whether the set $mathbb{R}^2$ of pairs of real numbers should be considered as the set of complex numbers, or as a set of vectors, depends on which operations you wish to equip that set with.
$endgroup$
– Nate Eldredge
26 mins ago




$begingroup$
@QthePlatypus: No, that's exactly the point. The question of whether the set $mathbb{R}^2$ of pairs of real numbers should be considered as the set of complex numbers, or as a set of vectors, depends on which operations you wish to equip that set with.
$endgroup$
– Nate Eldredge
26 mins ago












$begingroup$
I think the correct question were: is there a rigorous definition of the object "number" (without further characteristics such as "integer", "real", "complex" etc.)?
$endgroup$
– user
18 mins ago






$begingroup$
I think the correct question were: is there a rigorous definition of the object "number" (without further characteristics such as "integer", "real", "complex" etc.)?
$endgroup$
– user
18 mins ago












4 Answers
4






active

oldest

votes


















6












$begingroup$

The two fundamental operations for numbers are "addition" and "multiplication" which obey very nice "laws" of arithmetic. Taking powers is also important. You can do all of those things with complex numbers. You can add two vectors but the "dot" product of two vectors is not a vector and the "cross" product of two vectors does not satisfy the "nice laws". Neither the dot product nor the cross product of vectors can be used to define powers.






share|cite|improve this answer









$endgroup$













  • $begingroup$
    So Quaternions which have Non commutativity multiplication would also be considered as non numbers?
    $endgroup$
    – Q the Platypus
    41 mins ago






  • 3




    $begingroup$
    That's a good point- though I have never liked quaternions! Multiplication of quaternions is not commutative but it is associative which allows powers. That's what I was really thinking of.
    $endgroup$
    – user247327
    33 mins ago



















0












$begingroup$

Complex numbers do not have the same properties as vectors but they have similar properties (see dot product). We can represent complex numbers as vectors, but that is just a representation.



Complex numbers are also called imaginary numbers because the first appearance of them was quite confusing. They appeared in the solution of the cubic equation for the case of three distinct real roots. It took quite a time until people understood that they could calculate with complex numbers like with normal numbers but will some additional rules e.g. $i^2=-1$.



Complex numbers also do not have a comparison operator like $<$ or $>$. For example, assume
$i<0$ then $icdot i > 0 implies -1>0$ which is wrong. $i=0$ makes no sense. And $i>0$ then $icdot i >0 implies -1 >0$ which is wrong.



Hence, the name makes sense as these numbers have some imaginary or complex behavior which normal numbers do not show.






share|cite|improve this answer









$endgroup$









  • 2




    $begingroup$
    I’m not asking why complex numbers are call complex. I am asking why they are called numbers. BTW they are not called complex numbers because they are difficult but because complex can mean “made up of parts” like a “shopping complex”.
    $endgroup$
    – Q the Platypus
    45 mins ago



















0












$begingroup$

Numbers appeared first when we started to count things. $1$ tree, $2$ trees, $3$ trees, and so forth. That make up the set of non-zero natural numbers: $mathbb{N}$. Afterwards, people started to "count backwards" to get $mathbb{Z}$ (I'm just kidding, you can do some research on how negative numbers appeared historically). With the urge to divide things without remainders, the set of rational numbers $mathbb{Q}$ made its way to the world. A certain idea of geometric continuity gives us $mathbb{R}$. Finally we want all equations to have a root, that's how $mathbb{C}$ comes into play.



I guess what is considered "numbers" is rather a social question. The use of $mathbb{C}$
in physics and its $2$-D representation must have given a good intuition for a large set of people to accept it's intuitive enough to be considered "numbers".



I think it's not that natural to think of $mathbb{C}$ as a $mathbb{R}$-vector space of dimension $2$, not more natural than to think of $mathbb{R}$ as an infinite-dimensional $mathbb{Q}$-vector space, nor of $mathbb{Q}$ as a non-infinitely-generated $mathbb{Z}$-module.






share|cite|improve this answer











$endgroup$









  • 2




    $begingroup$
    People do think of complex numbers as points on the number plane.
    $endgroup$
    – Q the Platypus
    27 mins ago










  • $begingroup$
    Thank you. I'm sorry, that final part is just a personal opinion. edited.
    $endgroup$
    – Leaning
    26 mins ago





















0












$begingroup$

They're called "numbers" for historical reasons, since the motivation in the development of the complex numbers was solving polynomial equations. They were viewed as natural extensions of the real numbers. It's somehow quite natural and satisfying to say "every polynomial equation can be solved by some (complex) number". Is it more natural to regard $i$ as being a number which, when squared, is equal to $-1$, or is it more natural to regard $i$ as being some non-number thingamajig which when squared is equal to $-1$? Clearly the former.



"Higher" number system, like quaternions, aren't really called numbers very often, for the simple fact that they are not as intimately connected with number theory and analysis in the same way that complex numbers are.



Beyond these social conventions, I can't see any other reason. The word "number" doesn't have a strict or absolute definition in pure mathematics. $mathbb{N}$, $mathbb{Z}$, $mathbb{Q}$, $mathbb{R}$ and $mathbb{C}$ are technically just sets with a certain algebraic structure.



I partially disagree with the other answers which claim that complex numbers are numbers simply by virtue of the fact that you can add and multiply them. Well, if that's the rationale, is every ring also a set of numbers?






share|cite|improve this answer









$endgroup$













    Your Answer





    StackExchange.ifUsing("editor", function () {
    return StackExchange.using("mathjaxEditing", function () {
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    });
    });
    }, "mathjax-editing");

    StackExchange.ready(function() {
    var channelOptions = {
    tags: "".split(" "),
    id: "69"
    };
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function() {
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled) {
    StackExchange.using("snippets", function() {
    createEditor();
    });
    }
    else {
    createEditor();
    }
    });

    function createEditor() {
    StackExchange.prepareEditor({
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader: {
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    },
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    });


    }
    });














    draft saved

    draft discarded


















    StackExchange.ready(
    function () {
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3139486%2fwhy-do-we-call-complex-numbers-numbers-but-we-don-t-consider-2-vectors-numbers%23new-answer', 'question_page');
    }
    );

    Post as a guest















    Required, but never shown

























    4 Answers
    4






    active

    oldest

    votes








    4 Answers
    4






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    6












    $begingroup$

    The two fundamental operations for numbers are "addition" and "multiplication" which obey very nice "laws" of arithmetic. Taking powers is also important. You can do all of those things with complex numbers. You can add two vectors but the "dot" product of two vectors is not a vector and the "cross" product of two vectors does not satisfy the "nice laws". Neither the dot product nor the cross product of vectors can be used to define powers.






    share|cite|improve this answer









    $endgroup$













    • $begingroup$
      So Quaternions which have Non commutativity multiplication would also be considered as non numbers?
      $endgroup$
      – Q the Platypus
      41 mins ago






    • 3




      $begingroup$
      That's a good point- though I have never liked quaternions! Multiplication of quaternions is not commutative but it is associative which allows powers. That's what I was really thinking of.
      $endgroup$
      – user247327
      33 mins ago
















    6












    $begingroup$

    The two fundamental operations for numbers are "addition" and "multiplication" which obey very nice "laws" of arithmetic. Taking powers is also important. You can do all of those things with complex numbers. You can add two vectors but the "dot" product of two vectors is not a vector and the "cross" product of two vectors does not satisfy the "nice laws". Neither the dot product nor the cross product of vectors can be used to define powers.






    share|cite|improve this answer









    $endgroup$













    • $begingroup$
      So Quaternions which have Non commutativity multiplication would also be considered as non numbers?
      $endgroup$
      – Q the Platypus
      41 mins ago






    • 3




      $begingroup$
      That's a good point- though I have never liked quaternions! Multiplication of quaternions is not commutative but it is associative which allows powers. That's what I was really thinking of.
      $endgroup$
      – user247327
      33 mins ago














    6












    6








    6





    $begingroup$

    The two fundamental operations for numbers are "addition" and "multiplication" which obey very nice "laws" of arithmetic. Taking powers is also important. You can do all of those things with complex numbers. You can add two vectors but the "dot" product of two vectors is not a vector and the "cross" product of two vectors does not satisfy the "nice laws". Neither the dot product nor the cross product of vectors can be used to define powers.






    share|cite|improve this answer









    $endgroup$



    The two fundamental operations for numbers are "addition" and "multiplication" which obey very nice "laws" of arithmetic. Taking powers is also important. You can do all of those things with complex numbers. You can add two vectors but the "dot" product of two vectors is not a vector and the "cross" product of two vectors does not satisfy the "nice laws". Neither the dot product nor the cross product of vectors can be used to define powers.







    share|cite|improve this answer












    share|cite|improve this answer



    share|cite|improve this answer










    answered 45 mins ago









    user247327user247327

    11.3k1515




    11.3k1515












    • $begingroup$
      So Quaternions which have Non commutativity multiplication would also be considered as non numbers?
      $endgroup$
      – Q the Platypus
      41 mins ago






    • 3




      $begingroup$
      That's a good point- though I have never liked quaternions! Multiplication of quaternions is not commutative but it is associative which allows powers. That's what I was really thinking of.
      $endgroup$
      – user247327
      33 mins ago


















    • $begingroup$
      So Quaternions which have Non commutativity multiplication would also be considered as non numbers?
      $endgroup$
      – Q the Platypus
      41 mins ago






    • 3




      $begingroup$
      That's a good point- though I have never liked quaternions! Multiplication of quaternions is not commutative but it is associative which allows powers. That's what I was really thinking of.
      $endgroup$
      – user247327
      33 mins ago
















    $begingroup$
    So Quaternions which have Non commutativity multiplication would also be considered as non numbers?
    $endgroup$
    – Q the Platypus
    41 mins ago




    $begingroup$
    So Quaternions which have Non commutativity multiplication would also be considered as non numbers?
    $endgroup$
    – Q the Platypus
    41 mins ago




    3




    3




    $begingroup$
    That's a good point- though I have never liked quaternions! Multiplication of quaternions is not commutative but it is associative which allows powers. That's what I was really thinking of.
    $endgroup$
    – user247327
    33 mins ago




    $begingroup$
    That's a good point- though I have never liked quaternions! Multiplication of quaternions is not commutative but it is associative which allows powers. That's what I was really thinking of.
    $endgroup$
    – user247327
    33 mins ago











    0












    $begingroup$

    Complex numbers do not have the same properties as vectors but they have similar properties (see dot product). We can represent complex numbers as vectors, but that is just a representation.



    Complex numbers are also called imaginary numbers because the first appearance of them was quite confusing. They appeared in the solution of the cubic equation for the case of three distinct real roots. It took quite a time until people understood that they could calculate with complex numbers like with normal numbers but will some additional rules e.g. $i^2=-1$.



    Complex numbers also do not have a comparison operator like $<$ or $>$. For example, assume
    $i<0$ then $icdot i > 0 implies -1>0$ which is wrong. $i=0$ makes no sense. And $i>0$ then $icdot i >0 implies -1 >0$ which is wrong.



    Hence, the name makes sense as these numbers have some imaginary or complex behavior which normal numbers do not show.






    share|cite|improve this answer









    $endgroup$









    • 2




      $begingroup$
      I’m not asking why complex numbers are call complex. I am asking why they are called numbers. BTW they are not called complex numbers because they are difficult but because complex can mean “made up of parts” like a “shopping complex”.
      $endgroup$
      – Q the Platypus
      45 mins ago
















    0












    $begingroup$

    Complex numbers do not have the same properties as vectors but they have similar properties (see dot product). We can represent complex numbers as vectors, but that is just a representation.



    Complex numbers are also called imaginary numbers because the first appearance of them was quite confusing. They appeared in the solution of the cubic equation for the case of three distinct real roots. It took quite a time until people understood that they could calculate with complex numbers like with normal numbers but will some additional rules e.g. $i^2=-1$.



    Complex numbers also do not have a comparison operator like $<$ or $>$. For example, assume
    $i<0$ then $icdot i > 0 implies -1>0$ which is wrong. $i=0$ makes no sense. And $i>0$ then $icdot i >0 implies -1 >0$ which is wrong.



    Hence, the name makes sense as these numbers have some imaginary or complex behavior which normal numbers do not show.






    share|cite|improve this answer









    $endgroup$









    • 2




      $begingroup$
      I’m not asking why complex numbers are call complex. I am asking why they are called numbers. BTW they are not called complex numbers because they are difficult but because complex can mean “made up of parts” like a “shopping complex”.
      $endgroup$
      – Q the Platypus
      45 mins ago














    0












    0








    0





    $begingroup$

    Complex numbers do not have the same properties as vectors but they have similar properties (see dot product). We can represent complex numbers as vectors, but that is just a representation.



    Complex numbers are also called imaginary numbers because the first appearance of them was quite confusing. They appeared in the solution of the cubic equation for the case of three distinct real roots. It took quite a time until people understood that they could calculate with complex numbers like with normal numbers but will some additional rules e.g. $i^2=-1$.



    Complex numbers also do not have a comparison operator like $<$ or $>$. For example, assume
    $i<0$ then $icdot i > 0 implies -1>0$ which is wrong. $i=0$ makes no sense. And $i>0$ then $icdot i >0 implies -1 >0$ which is wrong.



    Hence, the name makes sense as these numbers have some imaginary or complex behavior which normal numbers do not show.






    share|cite|improve this answer









    $endgroup$



    Complex numbers do not have the same properties as vectors but they have similar properties (see dot product). We can represent complex numbers as vectors, but that is just a representation.



    Complex numbers are also called imaginary numbers because the first appearance of them was quite confusing. They appeared in the solution of the cubic equation for the case of three distinct real roots. It took quite a time until people understood that they could calculate with complex numbers like with normal numbers but will some additional rules e.g. $i^2=-1$.



    Complex numbers also do not have a comparison operator like $<$ or $>$. For example, assume
    $i<0$ then $icdot i > 0 implies -1>0$ which is wrong. $i=0$ makes no sense. And $i>0$ then $icdot i >0 implies -1 >0$ which is wrong.



    Hence, the name makes sense as these numbers have some imaginary or complex behavior which normal numbers do not show.







    share|cite|improve this answer












    share|cite|improve this answer



    share|cite|improve this answer










    answered 50 mins ago









    MachineLearnerMachineLearner

    4977




    4977








    • 2




      $begingroup$
      I’m not asking why complex numbers are call complex. I am asking why they are called numbers. BTW they are not called complex numbers because they are difficult but because complex can mean “made up of parts” like a “shopping complex”.
      $endgroup$
      – Q the Platypus
      45 mins ago














    • 2




      $begingroup$
      I’m not asking why complex numbers are call complex. I am asking why they are called numbers. BTW they are not called complex numbers because they are difficult but because complex can mean “made up of parts” like a “shopping complex”.
      $endgroup$
      – Q the Platypus
      45 mins ago








    2




    2




    $begingroup$
    I’m not asking why complex numbers are call complex. I am asking why they are called numbers. BTW they are not called complex numbers because they are difficult but because complex can mean “made up of parts” like a “shopping complex”.
    $endgroup$
    – Q the Platypus
    45 mins ago




    $begingroup$
    I’m not asking why complex numbers are call complex. I am asking why they are called numbers. BTW they are not called complex numbers because they are difficult but because complex can mean “made up of parts” like a “shopping complex”.
    $endgroup$
    – Q the Platypus
    45 mins ago











    0












    $begingroup$

    Numbers appeared first when we started to count things. $1$ tree, $2$ trees, $3$ trees, and so forth. That make up the set of non-zero natural numbers: $mathbb{N}$. Afterwards, people started to "count backwards" to get $mathbb{Z}$ (I'm just kidding, you can do some research on how negative numbers appeared historically). With the urge to divide things without remainders, the set of rational numbers $mathbb{Q}$ made its way to the world. A certain idea of geometric continuity gives us $mathbb{R}$. Finally we want all equations to have a root, that's how $mathbb{C}$ comes into play.



    I guess what is considered "numbers" is rather a social question. The use of $mathbb{C}$
    in physics and its $2$-D representation must have given a good intuition for a large set of people to accept it's intuitive enough to be considered "numbers".



    I think it's not that natural to think of $mathbb{C}$ as a $mathbb{R}$-vector space of dimension $2$, not more natural than to think of $mathbb{R}$ as an infinite-dimensional $mathbb{Q}$-vector space, nor of $mathbb{Q}$ as a non-infinitely-generated $mathbb{Z}$-module.






    share|cite|improve this answer











    $endgroup$









    • 2




      $begingroup$
      People do think of complex numbers as points on the number plane.
      $endgroup$
      – Q the Platypus
      27 mins ago










    • $begingroup$
      Thank you. I'm sorry, that final part is just a personal opinion. edited.
      $endgroup$
      – Leaning
      26 mins ago


















    0












    $begingroup$

    Numbers appeared first when we started to count things. $1$ tree, $2$ trees, $3$ trees, and so forth. That make up the set of non-zero natural numbers: $mathbb{N}$. Afterwards, people started to "count backwards" to get $mathbb{Z}$ (I'm just kidding, you can do some research on how negative numbers appeared historically). With the urge to divide things without remainders, the set of rational numbers $mathbb{Q}$ made its way to the world. A certain idea of geometric continuity gives us $mathbb{R}$. Finally we want all equations to have a root, that's how $mathbb{C}$ comes into play.



    I guess what is considered "numbers" is rather a social question. The use of $mathbb{C}$
    in physics and its $2$-D representation must have given a good intuition for a large set of people to accept it's intuitive enough to be considered "numbers".



    I think it's not that natural to think of $mathbb{C}$ as a $mathbb{R}$-vector space of dimension $2$, not more natural than to think of $mathbb{R}$ as an infinite-dimensional $mathbb{Q}$-vector space, nor of $mathbb{Q}$ as a non-infinitely-generated $mathbb{Z}$-module.






    share|cite|improve this answer











    $endgroup$









    • 2




      $begingroup$
      People do think of complex numbers as points on the number plane.
      $endgroup$
      – Q the Platypus
      27 mins ago










    • $begingroup$
      Thank you. I'm sorry, that final part is just a personal opinion. edited.
      $endgroup$
      – Leaning
      26 mins ago
















    0












    0








    0





    $begingroup$

    Numbers appeared first when we started to count things. $1$ tree, $2$ trees, $3$ trees, and so forth. That make up the set of non-zero natural numbers: $mathbb{N}$. Afterwards, people started to "count backwards" to get $mathbb{Z}$ (I'm just kidding, you can do some research on how negative numbers appeared historically). With the urge to divide things without remainders, the set of rational numbers $mathbb{Q}$ made its way to the world. A certain idea of geometric continuity gives us $mathbb{R}$. Finally we want all equations to have a root, that's how $mathbb{C}$ comes into play.



    I guess what is considered "numbers" is rather a social question. The use of $mathbb{C}$
    in physics and its $2$-D representation must have given a good intuition for a large set of people to accept it's intuitive enough to be considered "numbers".



    I think it's not that natural to think of $mathbb{C}$ as a $mathbb{R}$-vector space of dimension $2$, not more natural than to think of $mathbb{R}$ as an infinite-dimensional $mathbb{Q}$-vector space, nor of $mathbb{Q}$ as a non-infinitely-generated $mathbb{Z}$-module.






    share|cite|improve this answer











    $endgroup$



    Numbers appeared first when we started to count things. $1$ tree, $2$ trees, $3$ trees, and so forth. That make up the set of non-zero natural numbers: $mathbb{N}$. Afterwards, people started to "count backwards" to get $mathbb{Z}$ (I'm just kidding, you can do some research on how negative numbers appeared historically). With the urge to divide things without remainders, the set of rational numbers $mathbb{Q}$ made its way to the world. A certain idea of geometric continuity gives us $mathbb{R}$. Finally we want all equations to have a root, that's how $mathbb{C}$ comes into play.



    I guess what is considered "numbers" is rather a social question. The use of $mathbb{C}$
    in physics and its $2$-D representation must have given a good intuition for a large set of people to accept it's intuitive enough to be considered "numbers".



    I think it's not that natural to think of $mathbb{C}$ as a $mathbb{R}$-vector space of dimension $2$, not more natural than to think of $mathbb{R}$ as an infinite-dimensional $mathbb{Q}$-vector space, nor of $mathbb{Q}$ as a non-infinitely-generated $mathbb{Z}$-module.







    share|cite|improve this answer














    share|cite|improve this answer



    share|cite|improve this answer








    edited 26 mins ago

























    answered 30 mins ago









    LeaningLeaning

    1,221718




    1,221718








    • 2




      $begingroup$
      People do think of complex numbers as points on the number plane.
      $endgroup$
      – Q the Platypus
      27 mins ago










    • $begingroup$
      Thank you. I'm sorry, that final part is just a personal opinion. edited.
      $endgroup$
      – Leaning
      26 mins ago
















    • 2




      $begingroup$
      People do think of complex numbers as points on the number plane.
      $endgroup$
      – Q the Platypus
      27 mins ago










    • $begingroup$
      Thank you. I'm sorry, that final part is just a personal opinion. edited.
      $endgroup$
      – Leaning
      26 mins ago










    2




    2




    $begingroup$
    People do think of complex numbers as points on the number plane.
    $endgroup$
    – Q the Platypus
    27 mins ago




    $begingroup$
    People do think of complex numbers as points on the number plane.
    $endgroup$
    – Q the Platypus
    27 mins ago












    $begingroup$
    Thank you. I'm sorry, that final part is just a personal opinion. edited.
    $endgroup$
    – Leaning
    26 mins ago






    $begingroup$
    Thank you. I'm sorry, that final part is just a personal opinion. edited.
    $endgroup$
    – Leaning
    26 mins ago













    0












    $begingroup$

    They're called "numbers" for historical reasons, since the motivation in the development of the complex numbers was solving polynomial equations. They were viewed as natural extensions of the real numbers. It's somehow quite natural and satisfying to say "every polynomial equation can be solved by some (complex) number". Is it more natural to regard $i$ as being a number which, when squared, is equal to $-1$, or is it more natural to regard $i$ as being some non-number thingamajig which when squared is equal to $-1$? Clearly the former.



    "Higher" number system, like quaternions, aren't really called numbers very often, for the simple fact that they are not as intimately connected with number theory and analysis in the same way that complex numbers are.



    Beyond these social conventions, I can't see any other reason. The word "number" doesn't have a strict or absolute definition in pure mathematics. $mathbb{N}$, $mathbb{Z}$, $mathbb{Q}$, $mathbb{R}$ and $mathbb{C}$ are technically just sets with a certain algebraic structure.



    I partially disagree with the other answers which claim that complex numbers are numbers simply by virtue of the fact that you can add and multiply them. Well, if that's the rationale, is every ring also a set of numbers?






    share|cite|improve this answer









    $endgroup$


















      0












      $begingroup$

      They're called "numbers" for historical reasons, since the motivation in the development of the complex numbers was solving polynomial equations. They were viewed as natural extensions of the real numbers. It's somehow quite natural and satisfying to say "every polynomial equation can be solved by some (complex) number". Is it more natural to regard $i$ as being a number which, when squared, is equal to $-1$, or is it more natural to regard $i$ as being some non-number thingamajig which when squared is equal to $-1$? Clearly the former.



      "Higher" number system, like quaternions, aren't really called numbers very often, for the simple fact that they are not as intimately connected with number theory and analysis in the same way that complex numbers are.



      Beyond these social conventions, I can't see any other reason. The word "number" doesn't have a strict or absolute definition in pure mathematics. $mathbb{N}$, $mathbb{Z}$, $mathbb{Q}$, $mathbb{R}$ and $mathbb{C}$ are technically just sets with a certain algebraic structure.



      I partially disagree with the other answers which claim that complex numbers are numbers simply by virtue of the fact that you can add and multiply them. Well, if that's the rationale, is every ring also a set of numbers?






      share|cite|improve this answer









      $endgroup$
















        0












        0








        0





        $begingroup$

        They're called "numbers" for historical reasons, since the motivation in the development of the complex numbers was solving polynomial equations. They were viewed as natural extensions of the real numbers. It's somehow quite natural and satisfying to say "every polynomial equation can be solved by some (complex) number". Is it more natural to regard $i$ as being a number which, when squared, is equal to $-1$, or is it more natural to regard $i$ as being some non-number thingamajig which when squared is equal to $-1$? Clearly the former.



        "Higher" number system, like quaternions, aren't really called numbers very often, for the simple fact that they are not as intimately connected with number theory and analysis in the same way that complex numbers are.



        Beyond these social conventions, I can't see any other reason. The word "number" doesn't have a strict or absolute definition in pure mathematics. $mathbb{N}$, $mathbb{Z}$, $mathbb{Q}$, $mathbb{R}$ and $mathbb{C}$ are technically just sets with a certain algebraic structure.



        I partially disagree with the other answers which claim that complex numbers are numbers simply by virtue of the fact that you can add and multiply them. Well, if that's the rationale, is every ring also a set of numbers?






        share|cite|improve this answer









        $endgroup$



        They're called "numbers" for historical reasons, since the motivation in the development of the complex numbers was solving polynomial equations. They were viewed as natural extensions of the real numbers. It's somehow quite natural and satisfying to say "every polynomial equation can be solved by some (complex) number". Is it more natural to regard $i$ as being a number which, when squared, is equal to $-1$, or is it more natural to regard $i$ as being some non-number thingamajig which when squared is equal to $-1$? Clearly the former.



        "Higher" number system, like quaternions, aren't really called numbers very often, for the simple fact that they are not as intimately connected with number theory and analysis in the same way that complex numbers are.



        Beyond these social conventions, I can't see any other reason. The word "number" doesn't have a strict or absolute definition in pure mathematics. $mathbb{N}$, $mathbb{Z}$, $mathbb{Q}$, $mathbb{R}$ and $mathbb{C}$ are technically just sets with a certain algebraic structure.



        I partially disagree with the other answers which claim that complex numbers are numbers simply by virtue of the fact that you can add and multiply them. Well, if that's the rationale, is every ring also a set of numbers?







        share|cite|improve this answer












        share|cite|improve this answer



        share|cite|improve this answer










        answered 20 mins ago









        MathematicsStudent1122MathematicsStudent1122

        8,69122467




        8,69122467






























            draft saved

            draft discarded




















































            Thanks for contributing an answer to Mathematics Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3139486%2fwhy-do-we-call-complex-numbers-numbers-but-we-don-t-consider-2-vectors-numbers%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            What are all the squawk codes?

            What are differences between VBoxVGA, VMSVGA and VBoxSVGA in VirtualBox?

            Hudsonelva